Imagine being a legit theory for years, then being downgraded to “conspiracy theory”, only to bounce back even stronger less than a year later


“Why we need to take the threat of bioengineered superbugs seriously.”

By R. Daniel Bressler and Chris Bakerlee  Dec 6, 2018, Vox

This story is part of a group of stories called

Finding the best ways to do good.

This week, diplomats from around the world are meeting in Geneva, Switzerland, as part of an annual gathering of state parties for the Biological Weapons Convention (BWC). The BWC has an important mandate: It prohibits the 182 countries that have signed on and ratified the convention from developing, producing, and stockpiling biological weapons.

The BWC, and the biosecurity community broadly, has historically been more focused on existing pathogens with clear potential to be used as biological weapons, such as anthrax and the agents causing botulism and Q fever. In addition, health security experts are worried about the “next big one” — the next global pandemic. Pandemic diseases are often zoonotic, meaning they jump from animals to humans. Zoonotic diseases like EbolaZika, SARS, and HIV are created when, say, the wrong pig meets up with the wrong bat — and then meets the wrong human.

The emergence of such diseases depends a great deal on spontaneous genetic mutations and circumstantial factors. So here’s a scary thought: Possible future pandemics may not depend on the chance meeting of different animal species and chance mutations, but may be deliberately designed instead. New tools from the field of synthetic biology could endow scientists with the frightening ability to design and manufacture maximally dangerous pathogens, leapfrogging natural selection.

The threat is very much on the minds of security officials. This past May, the Johns Hopkins Center for Health Security (CHS) led an exercise involving former US senators and executive branch officials on how the country would respond to an international outbreak of an engineered pathogen. In this fictional scenario, a terrorist group constructed a virus that was both deadly and highly contagious. More than a year into the made-up pandemic, the worldwide death toll was soaring past 150 million, the Dow Jones had fallen by 90 percent, and there was a mass exodus from cities amid famine and unrest.

In biotech, the story of the past several decades has been one of exponential progress. Just 75 years ago, we were not even confident that DNA was the primary material governing genetic heredity. Today, we are able to readwrite, and edit genomes with increasing ease.

But biotechnologies are dual-use — they can be used for both good and ill. We fear that with even just current capabilities, an engineered pandemic could join the growing list of seismic changes made possible by biotechnological advances. Sufficiently capable actors could work to resurrect the deadliest pathogens of the past, like smallpox or Spanish flu, or modify existing pathogens such as bird flu to be more contagious and lethal. As genome engineering technologies become more powerful and ubiquitous, the tools necessary for making these modifications will become increasingly accessible.

This leads to the terrifying specter of independent actors intentionally (or unintentionally) engineering pathogens with the potential to inflict worse harm than history’s deadliest pandemics. No obvious physical or biological constraints preclude the construction of such potent biological weapons. According to biosecurity expert Piers Millett, “If you’re deliberately trying to create a pathogen that is deadly, spreads easily, and that we don’t have appropriate public health measures to mitigate, then that thing you create is amongst the most dangerous things on the planet.”

Mitigating this risk is shaping up to be one of the major challenges of the 21st century — not only because the stakes are high, but also because of the myriad obstacles standing between us and a solution.

The technologies that help us might also hurt us

Natural pandemics can be horrific and catch us completely off guard. For example, three years elapsed between the first officially documented US AIDS cases in 1981 and the identification of HIV as its cause. It took another three years to develop and approve the first drug treating HIV. While antiretroviral treatments now allow those living with HIV to manage the disease effectively (that is, if they can afford the treatment), we still lack a promising HIV vaccine.

Yet as ill-equipped as we may be to fight newly emergent natural pathogens, we are even less prepared to cope with engineered pathogens. In the coming decades, it may become possible to create pathogens that fall well outside the range of infectious agents modern medicine has learned to detect, treat, and contain.

Worse yet, malicious actors might build disease-causing microbes with features strategically tailored to thwart existing health security measures. So while advances in the field of synthetic biology will make it easier for us to invent therapeutics and other technologies that can defend us from pandemics, those very same advances may allow state and nonstate actors to design increasingly harmful pathogens.

For example, new gene-synthesis technologies loom large on the horizon, allowing for the automated production of longer DNA sequences from scratch. This will be a boon for basic and applied biomedical research — but it also will simplify the assembly of designer pathogens.

U.S. Army’s Dugway Proving Grounds, Laboratory For Testing Biological And Chemical Weapons
A technician at the Smartman Laboratory facility at the US Army’s Dugway Proving Ground on August 15, 2017, in Dugway, Utah. Workers at this facility handle some of the deadliest biological and chemical agents on earth.

Compared to other weapons of mass destruction, engineered pathogens are less resource-intensive. Although malicious actors would currently need university-grade laboratories and resources to create them, a bigger obstacle tends to be access to information. The limits of our knowledge of biology constrain the potential of any bioengineering effort. Some information, like how to work proficiently with a specific machine or cell type, can be acquired only through months or years of supervised training. Other information, like annotated pathogen genome sequences, may be easy to access through public databases, such as those maintained by the National Center for Biotechnology Information.

If information such as pathogen genome sequences or synthetic biology protocols is available online, this could make it much easier for malicious actors to build their own pathogens. But even if they’re not online, hackers can also steal sensitive information from the databases of biotechnology companies, universities, and government laboratories.

Preventing damage from engineered pathogens is complicated by the fact that it takes only one lapse, one resourceful terrorist group, or one rogue nation-state to wreak large-scale havoc. Even if the majority of scientists and countries follow proper protocols, a single unilateral actor could imperil human civilization.

And some wounds can be self-inflicted. Between 2004 and 2010, there were more than 700 incidents of loss or release of “select agents and toxins” (i.e., scary stuff) from US labs. In 11 instances, lab workers acquired bacterial or fungal infections. In one instance, a shipment of a harmful fungus was lost — and, according to the FBI, destroyed — in transit. In a world in which well-meaning but sometimes careless biologists are creating dangerous organisms in the lab, such accidental release events could prove even more frightening.

A global problem

Like naturally occurring pandemics, engineered pandemics will not respect national borders. A contagious pathogen released in one country will emigrate. Actions that protect against engineered pathogens are an example of a global public good: Since a deadly engineered pathogen would adversely affect countries around the world, doing something to prevent them is a service that benefits the whole world.

A fundamental challenge of global public goods is that they tend to be underprovided. With global public goods, individual countries prefer to free ride over unilaterally providing global public goods if they can get away with it.

This doesn’t mean that countries won’t do anything to provide global public goods; they just won’t do as much as they should. For example, a country such as the United States will consider the potential damage an engineered pathogen could wreak on its 325 million people, and it will take actions to prevent this from happening. However, the actions it takes won’t be as extensive as they would be if it were to consider the toll an engineered pathogen could take on the planet’s 7.6 billion people.

To address this dilemma, world leaders created the Biological Weapons Convention in the 1970s. The BWC has the important goal of constraining bioweapons development; in practice, it has been ineffective at verifying and enforcing compliance.

Unlike the BWC, the major nuclear and chemical weapons treaties have extensive formal verification mechanisms. The Nuclear Non-Proliferation Treaty (NPT), effective since 1970, verifies the compliance of signatories through the International Atomic Energy Agency, which has a staff of about 2,560. The Chemical Weapons Convention (CWC), effective since 1997, verifies compliance through the Organisation for the Prohibition of Chemical Weapons, which won the Nobel Peace Prize in 2013. It has a staff of 500. By contrast, the Implementation Support Unit for the BWC, the convention’s sole administrative body, currently has just four employees.

And bioweapons have specific characteristics that make verification and enforcement difficult compared to chemical and nuclear weapons.

Consider nuclear technology. Nuclear power plants require low levels of uranium enrichment (typically around 5 percent), whereas nuclear weapons require highly enriched uranium (typically above 90 percent). Highly enriched uranium requires large industrial facilities with precise centrifuges. When granted access, it is comparatively easy for inspectors to determine when a facility is being used for the production of highly enriched uranium.

Partly for these reasons, no country has ever developed nuclear weapons while being a party to the NPT. Of the nine nuclear weapons nations, the US, USSR (whose weapons are now exclusively owned by Russia), UK, France, China, and likely Israel had nuclear weapons before the treaty was enforced. India (first test in 1974) and Pakistan (first test in 1998) never signed the NPT. North Korea withdrew from the treaty in 2003, three years before its first nuclear test in 2006.

In contrast, bioengineered organisms require fewer resources and smaller facilities to make, and it is harder to readily distinguish between organisms that are being developed for scientific purposes from those that are being developed with malicious intent.

Historically, the BWC does not have a good track record of preventing the possession of bioweapons. The Soviet Union maintained a large bioweapons program after it signed on to the BWC in 1975. The South African apartheid regime held bioweapons in the 1980s and ’90s while being a party to the BWC.

Fearing that invasive verification by the BWC could compromise sensitive intellectual property and hurt the competitiveness of its cutting-edge biotechnology sector, the US chose to withdraw from negotiations at the BWC’s Fifth Review Conference in 2001. The US later rejoined those negotiations, but serious measures to improve the BWC’s verification and enforcement mechanisms have not been implemented, and the agreement remains largely ineffective.

Despite this concern about the invasiveness of verification, there is a growing consensus that the BWC must become more effective. The 2015 Bipartisan Report of the Blue Ribbon Study Panel on Biodefense, chaired by Joe Lieberman, the 2000 Democratic vice presidential candidate, and Tom Ridge, the first secretary of homeland security under George W. Bush, called for the vice president and the secretary of state to chair a series of meetings with relevant Cabinet members and experts to come to an agreement on verification protocols that would satisfy US concerns while adequately enforcing compliance with the treaty. The study led to the introduction of the National Biodefense Strategy Act of 2016, which is still awaiting a vote.

In September 2018, the Trump administration released a National Biodefense Strategy, though this document contained little specific information on how the US would strengthen the BWC and didn’t mention Cabinet-level meetings chaired by the vice president, as was recommended by the blue ribbon panel.

US Marines And New York Fire Fighters Take Part In Chemical Incident Drill In Penn Station
Emergency personnel walk down the aisle of an Amtrak train during a biological preparedness drill being led by members of the Chemical Biological Incident Response Force (CBIRF), a unit in the United States Marine Corps, at Penn Station during the early morning hours on September 22, 2012, in New York City. 

Some have questioned the seriousness of the threat posed by bioweapons. For example, in his recent book, Harvard University professor Steven Pinker suggests that “Bioterrorism may be [a] phantom menace.” He claims that terrorists wouldn’t weaponize pandemic pathogens, since their goal is typically “not damage but theater.” Others have suggested that even if terrorists wanted to engineer a pathogen as a weapon, they’d lack the requisite biological knowledge and practical know-how to get the job done.

While it is true (and quite fortunate) that these factors reduce at least the present risk of a biological attack, it is cold comfort. In the coming decades, it will only become easier for nonstate actors to acquire and deploy powerful biotechnologies for ill. And beyond terrorists, state actors also pose serious risks.

For example, Japan launched devastating bioattacks against China during World War II. Japanese Unit 731 dropped bombs filled with swarms of plague-infested fleas on Chinese cities, likely killing hundreds of thousands of civilians. The unit’s commander, Shiro Ishii, found plague to be a potent weapon because it could present itself as a natural epidemic and kill large numbers of people through person-to-person transmission.

In addition, the US had a bioweapons program from 1943 to 1969 that, among other things, made propaganda videos bragging about testing biological weapons on human subjects. The Soviet Union’s covert bioweapons program that it maintained after signing on to the BWC had more employees at its peak in the 1980s than Facebook currently has.

We don’t know what we don’t know — but here’s what we can do

Many questions remain unanswered when it comes to the potentially catastrophic risks posed by engineered pathogens. For example, what is the full spectrum of microbes that cause human disease? And which types of microbes would most likely be used as bioweapons? Research centers such as the Center for Health Security at Hopkins, the Future of Humanity Institute, and the Nuclear Threat Initiative are working hard to answer such questions.

But just because we don’t have answers to all the questions — and don’t even know all the questions to begin with — doesn’t mean there aren’t things we can do to mitigate our risks.

Thinking and acting globally

For starters, we should develop a process to address advancements in biotechnology in the BWC. Currently, the BWC lacks a dedicated forum where the treaty implications of new developments in biotechnology can be discussed. Other international agreements like the CWC have dedicated scientific advisory boards to track and respond to new science and technological changes. The BWC has no such board.

There’s some movement on this issue — the Johns Hopkins Center for Health Security hosted an event in Geneva earlier this week to discuss how the BWC can evolve to address rapid advances in biotechnology. Still, it is crucial to establish a permanent institutional capacity within the BWC to address biotechnological change.

This all connects to another priority: give the BWC’s Implementation Support Unit more resources. The four-person implementation support unit, the convention’s sole administrative body, has immense responsibilities that far exceed its current resources. These responsibilities include supporting and assisting nations as they implement the treaty, administering a database of assistance requests, facilitating communication between the parties, and much more.

But the resources remain minuscule, especially compared to other international treaties. The annual cost allocated to BWC meetings and its implementation support unit is less than 4.5 percent of the cost allocated to the CWC. This inadequate budget sends a grim signal about how seriously the world is currently taking the growing risks from bioweapons.

Another global priority should be finding ways to regulate dual-use gene synthesis technologies. To facilitate their research, biologists regularly order short, custom pieces of DNA from companies that specialize in their manufacture. In 2009, the International Gene Synthesis Consortium proposed guidelines for how gene synthesis companies should screen customers’ orders for potentially dangerous chunks of DNA, such as those found in harmful viruses or toxin genes. Most companies voluntarily follow these guidelines, and they represent 80 percent of the global market.

However, even companies currently applying recommended screening procedures only test whether ordered sequences match those of known pathogens. An engineered pathogen with a novel genome could potentially slip past this filter.

Presently, the gene synthesis market is expanding internationally and synthesis costs are falling. It is urgent that governments both independently and multilaterally act to mandate proper screening of sequences and customers. As Kevin Esvelt of MIT writes, “adequately screening all synthesized DNA could eliminate the most serious foreseeable hazards of biotech misuse by nonstate actors.”

Dealing with biorisk on the ground and in the lab

Beyond developing new global standards and practices, we need to adopt more flexible countermeasures to face off the threat of bioengineered pathogens. As noted in a recent CHS report, “One of the biggest challenges in outbreak response, particularly for emerging infectious diseases, is the availability of reliable diagnostic assays that can quickly and accurately determine infection status.”

Diagnostics based on cutting-edge genome sequencing methods could provide detailed information about all the viruses and bacteria present in a blood sample, including even completely novel pathogens. Meanwhile, as genome sequencing technology becomes less expensive, it could be more widely applied in clinics to provide unprecedented real-time insights into genetic diseases and cancer progression.

We also need to invest more in developing antivirals that hit a wider range of targets. Such broad-spectrum drugs may stand a better chance of slowing the proliferation of an engineered bug than treatments specific to single known pathogens.

And we should also develop “platform” technologies that allow rapid vaccine development. Currently, the process of designing, testing, and manufacturing a vaccine to prevent the spread of a new pathogen takes years. Ideally, we could immunize all at-risk individuals within months of identifying the pathogen. Accelerating vaccine development will require us to innovate new and likely unconventional technologies, such as vectored immunoprophylaxis or nucleic acid vaccines.

Even as we pursue and accelerate such research, we should also be mindful of the possibility of self-inflicted wounds. To avert a terrible accident, the international biomedical community should establish firmer cultural guardrails on the research into pathogens.

Currently, career advancement, financial gain, and raw curiosity motivate biologists at all levels to push the envelope, and we all stand to gain from their efforts. However, these same incentives can sometimes lead researchers to take substantial and perhaps unjustified risks, such as evolving dangerous strains of influenza to be more contagious or publishing instructions for cultivating a close cousin of the smallpox virus. It’s important for biologists to do their part to promote a culture in which this adventurous intellectual spirit is tempered by caution and humility.

Encouragingly, synthetic biology luminaries like Esvelt and George Church of Harvard University are doing just that, pioneering technological safeguards to mitigate accidental release risks and advocating policies and norms that would make 21st-century biology a less perilous pursuit. As the tools of synthetic biology spread to other disciplines, their example is one that others should follow.

Underlying the prescriptions above is the need to approach the problem with the sense of urgency it warrants. As our biotechnological capabilities grow, so too will the threat of engineered pathogens. An engineered pandemic won’t announce itself with a towering mushroom cloud, but the suffering of the individuals it touches will be no less real.

R. Daniel Bressler is a PhD candidate in the sustainable development program at Columbia University. His research is at the intersection of dual-use technologies, environmental change, and the capacity for collective action in the international system to deal with these issues. Find him on Twitter @DannyBressler1.

Chris Bakerlee is a PhD candidate in molecules, cells, and orgamisms at Harvard University, where he uses genetic engineering to study how evolution works. Find him on Twitter @cwbakerlee.



Below are screenshots of the edits made by Vox.

Below are screenshots from Vox’s 2020 articles.

Vox was founded in April 2014 by Ezra Klein, Matt Yglesias, and Melissa Bell. Prior to founding Vox, Ezra Klein was a former Washington Post columnist where he worked as the head of Wonkblog, a public policy blog. Vox is run by Vox Media, a digital publishing network founded by Jerome Armstrong, Tyler Bleszinski, and Markos Moulitsas.

According to its website, Vox Media’s portfolio includes 13 other brands: Vox, New York Magazine, The Verge, The Cut, Eater, Vulture, The Strategist, Polygon, SB Nation, Intelligencer, Curbed, Grub Street, and Recode.” – Tech StartUps

“Think outside the Vox”

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

The notorious Lock Step Scenario, proposed by The Rockefeller Foundation in 2010, is just one chapter in a larger document titled “Scenarios for the Future of Technology and International Development”.
As the Covid narrative is being buried in the bomb craters in Ukraine, it felt like a matter of common sense to ask myself if we’re entering another chapter of the same book.

This scenario may seem, for now, not as consistent with what’s going on as Lock Step is. It will probably never be, because they learn, change and adapt faster than us.
However, I find it chillingly close to the mainstream narrative. Many of he predictions that are not confirmed yet seem very likely to occur in the near future, in my assessment. After all, we’re just starting transitioning out of Lock Step into something new.
It’s up to everyone’s awareness, experience and wit to identify analogies and decide how relevant this document is, I’m just gong to add one more dare:
My bet is that if you find the good tips about the present and near future developments in this reading, you will be ahead of the curve just like the people who picked up on the Lock Step scenario early 2020.

NOTE: Their narrative starts in 2010, the real world events started 2020. And there’s more reasons you should ignore the years in their timeline, that’s not supposed to be exact science, focus on the succession of events and their mechanisms, rather.


An economically unstable and shock-prone
world in which governments weaken, criminals thrive,
and dangerous innovations emerge
Devastating shocks like September 11, the
Southeast Asian tsunami of 2004, and the
2010 Haiti earthquake had certainly primed
the world for sudden disasters. But no one
was prepared for a world in which large-scale
catastrophes would occur with such breathtaking
frequency. The years 2010 to 2020 were dubbed
the “doom decade” for good reason: the 2012
Olympic bombing, which killed 13,000, was
followed closely by an earthquake in Indonesia
killing 40,000, a tsunami that almost wiped
out Nicaragua, and the onset of the West China
Famine, caused by a once-in-a-millennium
drought linked to climate change.

Not surprisingly, this opening series of deadly
asynchronous catastrophes (there were more) put
enormous pressure on an already overstressed
global economy that had entered the decade
still in recession. Massive humanitarian relief
efforts cost vast sums of money, but the primary
sources—from aid agencies to developed-world
governments—had run out of funds to offer.
Most nation-states could no longer afford their
locked-in costs, let alone respond to increased
citizen demands for more security, more
healthcare coverage, more social programs and
services, and more infrastructure repair. In
2014, when mudslides in Lima buried thousands,
only minimal help trickled in, prompting the
Economist headline: “Is the Planet Finally

These dire circumstances forced tough tradeoffs.
In 2015, the U.S. reallocated a large share of its
defense spending to domestic concerns, pulling
out of Afghanistan—where the resurgent Taliban
seized power once again. In Europe, Asia, South
America, and Africa, more and more nation-
states lost control of their public finances, along
with the capacity to help their citizens and
retain stability and order. Resource scarcities and
trade disputes, together with severe economic
and climate stresses, pushed many alliances
and partnerships to the breaking point; they
also sparked proxy wars and low-level conflict
in resource-rich parts of the developing
world. Nations raised trade barriers in order to
protect their domestic sectors against imports
and—in the face of global food and resource
shortages—to reduce exports of agricultural
produce and other commodities. By 2016, the
global coordination and interconnectedness
that had marked the post-Berlin Wall world was
tenuous at best.

With government power weakened, order rapidly
disintegrating, and safety nets evaporating,
violence and crime grew more rampant.
Countries with ethnic, religious, or class
divisions saw especially sharp spikes in hostility:
Naxalite separatists dramatically expanded
their guerrilla campaign in East India; Israeli-
Palestinian bloodshed escalated; and across Africa,
fights over resources erupted along ethnic or tribal lines.

Meanwhile, overtaxed
militaries and police forces could do little to stop
growing communities of criminals and terrorists
from gaining power. Technology-enabled gangs
and networked criminal enterprises exploited
both the weakness of states and the desperation
of individuals.

With increasing ease, these
“global guerillas” moved illicit products through
underground channels from poor producer
countries to markets in the developed world.
Using retired 727s and other rogue aircraft, they
crisscrossed the Atlantic, from South America
to Africa, transporting cocaine, weapons, and
operatives. Drug and gun money became a
common recruiting tool for the desperately poor.

Criminal networks also grew highly skilled
at counterfeiting licit goods through reverse
engineering. Many of these “rip-offs” and
copycats were of poor quality or downright
dangerous. In the context of weak health
systems, corruption, and inattention to
standards—either within countries or
from global bodies like the World Health
Organization—tainted vaccines entered the
public health systems of several African


– Aidan Eyakuze, Society for International
Development, Tanzania

In 2021, 600 children in Cote d’Ivoire
died from a bogus Hepatitis B vaccine, which
paled in comparison to the scandal sparked by
mass deaths from a tainted anti-malarial drug
years later. The deaths and resulting scandals
sharply affected public confidence in vaccine
delivery; parents not just in Africa but elsewhere
began to avoid vaccinating their children, and
it wasn’t long before infant and child mortality
rates rose to levels not seen since the 1970s.
Technology hackers were also hard at work.
Internet scams and pyramid schemes plagued

Meanwhile, more sophisticated
hackers attempted to take down corporations,
government systems, and banks via phishing
scams and database information heists, and their
many successes generated billions of dollars in
losses. Desperate to protect themselves and their
intellectual property, the few multinationals
still thriving enacted strong, increasingly
complex defensive measures. Patent applications
skyrocketed and patent thickets proliferated,
as companies fought to claim and control even
the tiniest innovations. Security measures and
screenings tightened.

This “wild west” environment had a profound
impact on innovation. The threat of being
hacked and the presence of so many thefts and
fakes lowered the incentives to create “me first”
rather than “me too” technologies. And so many
patent thickets made the cross-pollination of
ideas and research difficult at best. Blockbuster
pharmaceuticals quickly became artifacts of
the past, replaced by increased production
of generics. Breakthrough innovations still
happened in various industries, but they were
focused more on technologies that could not be
easily replicated or re-engineered. And once
created, they were vigorously guarded by their
inventors—or even by their nations. In 2022, a
biofuel breakthrough in Brazil was protected as a
national treasure and used as a bargaining chip
in trade with other countries.

Verifying the authenticity of anything was
increasingly difficult. The heroic efforts
of several companies and NGOs to create
recognized seals of safety and approval proved
ineffective when even those seals were hacked.
The positive effects of the mobile and internet
revolutions were tempered by their increasing
fragility as scamming and viruses proliferated,
preventing these networks from achieving the
reliability required to become the backbone
of developing economies—or a source of
trustworthy information for anybody.

Interestingly, not all of the “hacking” was bad.
Genetically modified crops (GMOs) and do-it
yourself (DIY) biotech became backyard and
garage activities, producing important advances.
In 2017, a network of renegade African scientists
who had returned to their home countries after
working in Western multinationals unveiled
the first of a range of new GMOs that boosted
agricultural productivity on the continent.

But despite such efforts, the global have/have
not gap grew wider than ever. The very rich still
had the financial means to protect themselves;
gated communities sprung up from New York
to Lagos, providing safe havens surrounded by
slums. In 2025, it was de rigueur to build not
a house but a high-walled fortress, guarded by
armed personnel. The wealthy also capitalized on
the loose regulatory environment to experiment
with advanced medical treatments and other
under-the-radar activities.

Those who couldn’t buy their way out of
chaos—which was most people—retreated
to whatever “safety” they could find. With
opportunity frozen and global mobility at a
near standstill—no place wanted more people,
especially more poor people—it was often a
retreat to the familiar: family ties, religious
beliefs, or even national allegiance. Trust
was afforded to those who guaranteed safety
and survival—whether it was a warlord, an
evangelical preacher, or a mother. In some
places, the collapse of state capacity led to a
resurgence of feudalism. In other areas, people
managed to create more resilient communities
operating as isolated micro versions of formerly
large-scale systems. The weakening of national
governments also enabled grassroots movements
to form and grow, creating rays of hope amid
the bleakness.

By 2030, the distinction between
“developed” and “developing” nations no longer
seemed particularly descriptive or relevant. •





To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them


If you’re familiar with our reports, George Church is no stranger to you either. He’s a founder figure for the Human Genome Project, CRISPR and The BRAIN Initiative. But he’s totally not getting the deserved attention, seeing that he’s just turned our world upside down. Not by himself, of course.

Meet George Church

Remember when Fauci and Big Tech joined efforts to keep us in the dark in regards to the mRNA impact on our genetics and DNA?

We’ve shown that there’s an entire new field of science that does just that: argues what Fauci said by using RNA to reprogram DNA. YouTube ad Facebook censored this.

Let’s see how are they going to argue this gentle giant of the science world and all his dark entanglements:

George M. Church biography as per Harvard website

Professor at Harvard & MIT, co-author of 580 papers, 143 patent publications & the book “Regenesis”; developed methods used for the first genome sequence (1994) & million-fold cost reductions since (via fluor-NGS & nanopores), plus barcoding, DNA assembly from chips, genome editing, writing & recoding; co-initiated BRAIN Initiative (2011) & Genome Projects (GP-Read-1984, GP-Write-2016, PGP-2005:world’s open-access personal precision medicine datasets); machine learning for protein engineering, tissue reprogramming, organoids, xeno-transplantation, in situ 3D DNA, RNA, protein imaging.


George Church is Professor of Genetics at Harvard Medical School and Director of, which provides the world’s only open-access information on human Genomic, Environmental & Trait data (GET). His 1984 Harvard PhD included the first methods for direct genome sequencing, molecular multiplexing & barcoding. These led to the first genome sequence (pathogen, Helicobacter pylori) in  1994 . His innovations have contributed to nearly all “next generation” DNA sequencing methods and companies (CGI-BGI, Life, Illumina, Nanopore). This plus his lab’s work on chip-DNA-synthesis, gene editing and stem cell engineering resulted in founding additional application-based companies spanning fields of medical diagnostics ( Knome/PierianDxAlacrisAbVitro/JunoGenosVeritas Genetics ) & synthetic biology / therapeutics ( JouleGen9EditasEgenesisenEvolvWarpDrive ). He has also pioneered new privacybiosafetyELSIenvironmental & biosecurity policies. He is director of an IARPA BRAIN Project and NIH Center for Excellence in Genomic Science. His honors include election to NAS & NAE & Franklin Bower Laureate for Achievement in Science. He has coauthored 537 papers156 patent publications & one book (Regenesis).


PhD students from (* = main training programs for our group):
Harvard University: Biophysics* , BBS* , MCB , ChemBio* , SystemsBio* , Virology
MIT: HST*ChemistryEE/CSPhysicsMath.
Boston Universty: BioinformaticsBiomedical Engineering
Cambridge University, UK: Genetics

PublicationsCVs-resumesLab members , Co-author netELSI
Technology transfer & Commercial Scientific Advisory Roles
Personal info — News — Awards — Grant proposals
Director of Research Centers: DOE-Biotechnologies (1987), NIH-CEGS (2004), PGP (2005), Lipper Center for Computational Genetics (1998), Wyss Inst. Synthetic Biology (2009). Other centers: Regenesis Inst. (2017), SIAT Genome Engineering (2019), Space Genetics (2016), WICGR, Broad Inst. (1990), MIT Media Lab (2014)

Updated: 15-Jan-02021

The BRAIN initiative[edit]

He was part of a team of six[80] who, in a 2012 scientific commentary, proposed a Brain Activity Map, later named BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies).[81] They outlined specific experimental techniques that might be used to achieve what they termed a “functional connectome“, as well as new technologies that will have to be developed in the course of the project,[80] including wireless, minimally invasive methods to detect and manipulate neuronal activity, either utilizing microelectronics or synthetic biology. In one such proposed method, enzymatically produced DNA would serve as a “ticker tape record” of neuronal activity.Wikipedia

Wyss Institute Will Lead IARPA-Funded Brain Mapping Consortium

January 26, 2016

(BOSTON) — The Wyss Institute for Biologically Inspired Engineering at Harvard University today announced a cross-institutional consortium to map the brain’s neural circuits with unprecedented fidelity. The consortium is made possible by a $21 million contract from the Intelligence Advanced Research Projects Activity (IARPA) and aims to discover the brain’s learning rules and synaptic ‘circuit design’, further helping to advance neurally-derived machine learning algorithms.

The consortium will leverage the Wyss Institute’s FISSEQ (fluorescent in-situ sequencing) method to push forward neuronal connectomics, the science of identifying the neuronal cells that work together to bring about specific brain functions. FISSEQ was developed in 2014 by the Wyss Core Faculty member George Church and colleagues and, unlike traditional sequencing technologies, it provides a method to pinpoint the precise locations of specific RNA molecules in intact tissue. The consortium will harness this FISSEQ capability to accurately trace the complete set of neuronal cells and their connecting processes in intact brain tissue over long distances, which is currently difficult to do with other methods.

Awarded a competitive IARPA MICrONS contract, the consortium will further the overall goals of President Obama’s BRAIN initiative, which aims to improve the understanding of the human mind and uncover new ways to treat neuropathological disorders like Alzheimer’s disease, schizophrenia, autism and epilepsy. The consortium’s work will fundamentally innovate the technological framework used to decipher the principal circuits neurons use to communicate and fulfill specific brain functions. The learnings can be applied to enhance artificial intelligence in different areas of machine learning such as fraud detection, pattern and image recognition, and self-driving car decision making.

See how the Wyss-developed FISSEQ technology is able to capture the location of individual RNA molecules within cells, which will allow the reconstruction of neuronal networks in the 3-dimensional space of intact brain tissue. Credit: Wyss Institute at Harvard University

“Historically, the mapping of neuronal paths and circuits in the brain has required brain tissue to be sectioned and visualized by electron microscopy. Complete neurons and circuits are then reconstructed by aligning the individual electron microsope images, this process is costly and inaccurate due to use of only one color (grey),” said Church, who is the Principal Investigator for the IARPA MICrONs consortium. “We are taking an entirely new approach to neuronal connectomics_immensely colorful barcodes_that should overcome this obstacle; and by integrating molecular and physiological information we are looking to render a high-definition map of neuronal circuits dedicated first to specific sensations, and in the future to behaviors and cognitive tasks.”

Church is Professor of Genetics at Harvard Medical School, and Professor of Health Sciences and Technology at Harvard and MIT.

To map neural connections, the consortium will genetically engineer mice so that each neuron is barcoded throughout its entire structure with a unique RNA sequence, a technique called BOINC (Barcoding of Individual Neuronal Connections) developed by Anthony Zador at Cold Spring Harbor Laboratory. Thus a complete map representing the precise location, shape and connections of all neurons can be generated.

The key to visualizing this complex map will be FISSEQ, which is able to sequence the total complement of barcodes and pinpoint their exact locations using a super-resolution microscope. Importantly, since FISSEQ analysis can be applied to intact brain tissue, the error-prone brain-sectioning procedure that is part of common mapping studies can be avoided and long neuronal processes can be more accurately traced in larger numbers and at a faster pace.

In addition, the scientists will provide the barcoded mice with a sensory stimulus, such as a flash of light, to highlight and glean the circuits corresponding to that stimulus within the much more complex neuronal map. An improved understanding of how neuronal circuits are composed and how they function over longer distances will ultimately allow the team to build new models for machine learning.

The multi-disciplinary consortium spans 6 institutions. In addition to Church, the Wyss Institute’s effort will be led by Samuel Inverso, Ph.D., who is a Staff Software Engineer and Co-investigator of the project. Complementing the Wyss team, are co-Principal Investigators Anthony Zador, Ph.D., Alexei Koulakov, Ph.D., and Jay Lee, Ph.D., at Cold Spring Harbor Laboratory. Adam Marblestone, Ph.D., and Liam Paninski, Ph.D. are co-Investigator at MIT and co-Principal Investigator at Columbia University, respectively. The Harvard-led consortium is partnering with another MICrONS team led by Tai Sing Lee, Ph.D. of Carnegie Mellon University as Principal investigator under a separate multi-million contract, with Sandra Kuhlman, Ph.D. of Carnegie Mellon University and Alan Yuille, Ph.D. of Johns Hopkins University as co-Principal investigators, to develop computational models of the neural circuits and a new generation of machine learning algorithms by studying the behaviors of a large population of neurons in behaving animals, as well as the circuitry of the these neurons revealed by the innovative methods developed by the consortium.

“It is very exciting to see how technology developed at the Wyss Institute is now becoming instrumental in showing how specific brain functions are wired into the neuronal architecture. The methodology implemented by this research can change the trajectory of brain mapping world wide,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. – WYSS Institute


Machine Intelligence from Cortical Networks (MICrONS)

Intelligence Advanced Research Projects Activity (IARPA)

Brain Research through Advancing Innovative Neurotechnologies. (BRAIN)

The science behind Obama’s BRAIN project. (BrainFacts, 15Apr-2013 | Jean-François Gariépy)
Wyss Institute Will Lead IARPA-Funded Brain Mapping Consortium (Wyss, 26-Jan-2016 |)
Project Aims to Reverse-engineer Brain Algorithms, Make Computers Learn Like Humans (Scientific Computing, 4-Feb-2016 | Byron Spice)
The U.S. Government Launches a $100-Million “Apollo Project of the Brain” (Scientific American, 8-Mar-2016 | Jordana Cepelewicz)

Grant Proposal
Tasks 2 & 3 PDF Harvard, Wyss, CSHL, MIT.
Task 1. CMU.

Molecular TickertapeRelated Projects:

Full Rosetta brains in situ
A. Activity (MICrONS = Ca imaging) (Alternative=Tickertape, see figure to right)
B. Behavior (MICrONS & Alt = traditional video)
C. Connectome (MICrONS & Alt = BOINC via Cas9-barcode)
D. Developmental Lineage (via Cas9-barcode)
E. Expression (RNA & Protein via FISSEQ)

Building brain components, circuits and organoids.
Busskamp V, Lewis NE, Guye P, Ng AHM, Shipman S, Byrne SS, Sanjana NE, Li Y, Weiss R, Church GM (2014)
Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology MSB 10:760:1-21


Flagship Pioneering’s Scientists Invent a New Category of Genome Engineering Technology: Gene Writing

Tessera Therapeutics emerges from three years of stealth operations to pioneer Gene Writing™ as a new genome engineering technology and category of genetic medicine

(PRNewsfoto/Flagship Pioneering)

NEWS PROVIDED BY Flagship Pioneering 

Jul 07, 2020, 08:00 ET

CAMBRIDGE, Mass., July 7, 2020 /PRNewswire/ — Flagship Pioneering today announced the unveiling of Tessera Therapeutics, Inc. a new company with the mission of curing disease by writing in the code of life. Tessera is pioneering Gene Writing™, a new biotechnology that writes therapeutic messages into the genome to treat diseases at their source.

Tessera’s Gene Writing platform is a potentially revolutionary breakthrough for genetic medicine that addresses key limitations of gene therapy and gene editing. Gene Writing technology can alter the genome by efficiently inserting genes and exons (parts of genes), introducing small insertions and deletions, or changing single or multiple DNA base pairs. The technology could enable cures for diseases that arise from errors in the genome, including monogenic disorders. It could also allow precise gene regulation in other diseases such as neurodegenerative diseases, autoimmune disorders, and metabolic diseases.

“While profound advancements in genetic medicine over the last two decades had therapeutic promise for many previously untreatable diseases, the intrinsic properties of existing gene therapy and editing have significant shortcomings that limit their benefits to patients,” says Noubar Afeyan, Ph.D., founder and CEO of Flagship Pioneering and Chairman of Tessera Therapeutics. “Our scientists have invented a new technology, called Gene Writing, that has the ability to write therapeutic messages into the genomes of somatic cells. We created Tessera to pioneer its applications for medicine. However, the breakthrough is broad and could be applied to many different genomes from humans to plants to microorganisms.”

A New Era of Genetic Medicine

Geoffrey von Maltzahn, Ph.D., an MIT-trained biological engineer; Jacob Rubens, Ph.D., an MIT-trained synthetic biologist; and other scientists at Flagship Labs, the enterprise’s innovation foundry, co-founded Tessera in 2018 to create a platform that could design, make, and launch Gene Writing medicines. A General Partner at Flagship Pioneering, von Maltzahn has co-founded numerous biotechnology companies, including Sana Biotechnology, Indigo Agriculture, Kaleido Biosciences, Seres Therapeutics, and Axcella Health.

“DNA codes for life. But sometimes our DNA is written improperly, driving an enormous variety of diseases,” says von Maltzahn, Tessera’s Chief Executive Officer. “We started Tessera Therapeutics with a simple question: ‘What if Nature evolved a better solution than CRISPR for inserting curative therapeutic messages into the genome?’ It turns out that engineered and synthetic mobile genetic elements offer the potential to go beyond the limitations of gene editing technologies and allow Gene Writing. Our outstanding team of scientists is focused on bringing the vast promise of this new technology category to patients.”

Mobile genetic elements, the inspiration for Gene Writing, are evolution’s greatest genomic architect. The first mobile genetic element was discovered by Barbara McClintock, who won the 1983 Nobel Prize for revealing the mobile nature of genes. Mobile genetic elements code for the machinery to move or copy themselves into a new location in the genome, and they have been selected over billions of years to autonomously and efficiently “write” their DNA into new genomic sites. Today, mobile genetic elements are among the most abundant and ubiquitous genes in nature.

Over the past two years, Tessera has been mining genomes to discover novel mobile genetic elements and engineering them to create Gene Writing technology.

Tessera’s Gene Writers write therapeutic messages into the genome using RNA or DNA templates. RNA-based Gene Writing uses an RNA template and Gene Writer protein to either write a new gene into the genome or guide the rewriting of a pre-existing genomic sequence to make a small substitution, insertion, or deletion. DNA-based Gene Writing uses a DNA template to write a new gene into the genome.

By harnessing the biology of mobile genetic elements, Gene Writing holds the potential to overcome the limitations of current genetic medicine approaches by:

  • Efficiently writing small and large alterations to the genome of somatic cells with minimal reliance upon host DNA repair pathways, unlike nuclease-based gene editing technologies.
  • Permanently adding new DNA to dividing cells, unlike AAV-based gene therapy technologies.
  • Writing new DNA sequences into the genome by delivering only RNA.
  • Allowing repeated administration of treatments to patients in order to dose genetic medicines to effect, which is not possible with current gene therapies.

Tessera has licensed Flagship Pioneering’s intellectual property estate, which was begun in 2018 with seminal patent filings supporting both RNA and DNA Gene Writing technologies.

Tessera’s Scientific Advisory Board includes Luigi Naldini, David Schaffer, Andrew Scharenberg, Nancy Craig, George Church, Jonathan Weissman, and John Moran, who collectively have decades of experience in developing gene therapies and gene editing technologies, and also have commercial expertise from 4D, UniQure, Casebia, Cellectis, Magenta, and Editas. Tessera’s Board of Directors includes John Mendlein, Flagship Executive Partner and former CEO of multiple companies; Melissa Moore, Chair of Tessera’s Scientific Advisory Board, Chief Scientific Officer of Moderna, member of the National Academy of Sciences, and founding co-director of the RNA Therapeutics Institute; Geoffrey von Maltzahn; and Noubar Afeyan. The 30-person R&D team at Tessera has deep genetic medicine and startup expertise, including alumni from Editas, Intellia, Beam, Casebia, and Moderna.

About Tessera Therapeutics
Tessera Therapeutics is an early-stage life sciences company pioneering Gene Writing™, a new biotechnology designed to offer scientists and doctors the ability to write and rewrite small and large therapeutic messages into the genome, thereby curing diseases at their source. Gene Writing holds the potential to become a new category in genetic medicine, building upon recent breakthroughs in gene therapy and gene editing, while eliminating important limitations in their reach, utilization and efficacy. Tessera Therapeutics was founded by Flagship Pioneering, a life sciences innovation enterprise that conceives, resources, and develops first-in-class category companies to transform human health and sustainability.

About Flagship Pioneering
Flagship Pioneering conceives, creates, resources, and develops first-in-category life sciences companies to transform human health and sustainability. Since its launch in 2000, the firm has applied a unique hypothesis-driven innovation process to originate and foster more than 100 scientific ventures, resulting in over $34 billion in aggregate value. To date, Flagship is backed by more than $4.4 billion of aggregate capital commitments, of which over $1.9 billion has been deployed toward the founding and growth of its pioneering companies alongside more than $10 billion of follow-on investments from other institutions. The current Flagship ecosystem comprises 41 transformative companies, including Axcella Health (NASDAQ: AXLA), Denali Therapeutics (NASDAQ: DNLI), Evelo Biosciences (NASDAQ: EVLO), Foghorn Therapeutics, Indigo Ag, Kaleido Biosciences (NASDAQ: KLDO), Moderna (NASDAQ: MRNA), Rubius Therapeutics (NASDAQ: RUBY), Sana Biotechnology, Seres Therapeutics (NASDAQ: MCRB), and Syros Pharmaceuticals (NASDAQ: SYRS). – Flagship Pioneering

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them