You thought Magnetogenetics are scary? Optogenetics are a similar thing, but using light instead of electromagnetism, non-invasive and non-detectable. Both stem from DARPA’s BRAIN Initiative.
And you may be able to avoid EMF radiation, but you can’t avoid light.

(BIOHACKING P.6)

This actually touches on a wide array of concerns, from LEDs to vaccines, The Great Reset and the smart grid.
I am very confident that if you pay attention to this video presentation from start to end, you will spend one hour, but you will save incommensurably more hours of guessing, wondering and researching. Not just the many hours I spent doing this, but the many more hours I learned where to look for and how to connect things.
You’re still supposed to not take my word and do your own research, but this will give you some of the best tips on the topic.

Oh, so much wow! just hours after putting this out I find out they will be spraying us with viruses. Shocker!

ADDITIONAL RESOURCES

OBAMA, DARPA, GSK AND ROCKEFELLER’S $4.5B B.R.A.I.N. INITIATIVE – BETTER SIT WHEN YOU READ

THE INTERNET OF BODIES AKA THE BORG IS HERE, KLAUS SCHWAB SAYS (BIOHACKING P.5)

FOIA RELEASE: REMOTE MIND CONTROL LINKED TO DARPA’S BRAIN MAPPING. IN 2018

MAGNETOGENETICS, CO-FINANCED BY DARPA, GATES, ROCKEFELLERS, ZUCKERBERG! ISN’T THIS WHY VAXXERS TURN INTO FRIDGE DOORS AND MAGNETS STICK ON THEM?!

HOW CAN PATTERNED ILLUMINATION BE USED IN OPTOGENETICS EXPERIMENTS?

Brain Control With Light: It’s Possible With Optogenetics

Lighting the Brain

Karl Deisseroth and the optogenetics breakthrough.

By John Colapinto, The New Yorker, May 11, 2015

By rendering individual neurons photosensitive Deisseroths technique brings a once unthinkable level of precision and...
By rendering individual neurons photosensitive, Deisseroth’s technique brings a once unthinkable level of precision and control to experiments designed to determine how the brain processes information and drives behavior.

DARPA Awards $21.6M to Develop Optogenetic ‘Read-Write’ Neural Interface

July 24, 2017, Biosciences

Ehud Isacoff of the Molecular Biophysics and Integrated Bioimaging (MBIB) Division is the project lead on a $21.6 million grant awarded to UC Berkeley as part of the Defense Advanced Research Projects Agency’s (DARPA’s) Neural Engineering System Design program. The team led by Isacoff, director of the Helen Wills Neuroscience Institute at UC Berkeley, aims to develop a novel brain-machine interface that uses light to monitor and modulate the activity of thousands to millions of individual neurons in the cerebral cortex.

To communicate with the brain, the team will first introduce a gene encoding a fluorescent protein into neurons, making the cells flash when they fire an action potential. This will be accompanied by a second gene encoding a light-activated protein that stimulates neurons in response to pulses of light. The reading device Isacoff’s group is developing is a miniaturized light field microscope, which captures light through an array of lenses and reconstructs images computationally in any depth of focus. For the writing component, they are developing a means to stimulate groups of neurons by projecting three-dimensional light patterns onto them.

The researchers’ goal during the initial four-year funding period is to create a prototype device using model organisms—such as zebrafish larvae and mice—in which neural activity and behavior can be simultaneously detected and controlled. But DARPA’s ultimate goal is to accelerate the development of biocompatible neural implants for use in humans to compensate for sensory deficits or to control prosthetic devices. Read more from the UC Berkeley News Center.

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

ORDER

We need to speed up our little awakening because we’re still light-years behind the reality.
This dwarfs Afghanistan and Covid is but a chapter in its playbook.
This connects all the trigger-words: 5G, Covid, Vaccines, Graphene, The Great Reset, Blockchain, The Fourth Industrial Revolution and beyond.

What Is the Internet of Bodies?

Source: The Rand Corporation (Download PDF)


A wide variety of internet-connected “smart”
devices now promise consumers and
businesses improved performance, convenience, efficiency, and fun. Within this
broader Internet of Things (IoT) lies a growing
industry of devices that monitor the human body,
collect health and other personal information, and
transmit that data over the internet. We refer to these
emerging technologies and the data they collect as
the Internet of Bodies (IoB) (see, for example, Neal,
2014; Lee, 2018), a term first applied to law and policy
in 2016 by law and engineering professor Andrea M.
Matwyshyn (Atlantic Council, 2017; Matwyshyn,
2016; Matwyshyn, 2018; Matawyshyn, 2019).
IoB devices come in many forms. Some are
already in wide use, such as wristwatch fitness
monitors or pacemakers that transmit data about
a patient’s heart directly to a cardiologist. Other
products that are under development or newly on the
market may be less familiar, such as ingestible products that collect and send information on a person’s
gut, microchip implants, brain stimulation devices,
and internet-connected toilets.
These devices have intimate access to the body
and collect vast quantities of personal biometric data.
IoB device makers promise to deliver substantial
health and other benefits but also pose serious risks,
including risks of hacking, privacy infringements,
or malfunction. Some devices, such as a reliable
artificial pancreas for diabetics, could revolutionize
the treatment of disease, while others could merely
inflate health-care costs with little positive effect on
outcomes. Access to huge torrents of live-streaming
biometric data might trigger breakthroughs in medical knowledge or behavioral understanding. It might increase health outcome disparities, where only
people with financial means have access to any of
these benefits. Or it might enable a surveillance state
of unprecedented intrusion and consequence.
There is no universally accepted definition of
the IoB.1
For the purposes of this report, we refer to
the IoB, or the IoB ecosystem, as IoB devices (defined
next, with further explanation in the passages that
follow) together with the software they contain and
the data they collect.

An IoB device is defined as a device that
• contains software or computing capabilities
• can communicate with an internet-connected
device or network
and satisfies one or both of the following:
• collects person-generated health or biometric
data
• can alter the human body’s function.
The software or computing capabilities in an
IoB device may be as simple as a few lines of code
used to configure a radio frequency identification (RFID) microchip implant, or as complex as a computer that processes artificial intelligence (AI)
and machine learning algorithms. A connection to
the internet through cellular or Wi-Fi networks is
required but need not be a direct connection. For
example, a device may be connected via Bluetooth to
a smartphone or USB device that communicates with
an internet-connected computer. Person-generated
health data (PGHD) refers to health, clinical, or
wellness data collected by technologies to be recorded
or analyzed by the user or another person. Biometric
or behavioral data refers to measurements of unique
physical or behavioral properties about a person.
Finally, an alteration to the body’s function refers
to an augmentation or modification of how the
user’s body performs, such as a change in cognitive
enhancement and memory improvement provided
by a brain-computer interface, or the ability to record
whatever the user sees through an intraocular lens
with a camera.
IoB devices generally, but not always, require a
physical connection to the body (e.g., they are worn,
ingested, implanted, or otherwise attached to or
embedded in the body, temporarily or permanently).
Many IoB devices are medical devices regulated by
the U.S. Food and Drug Administration (FDA).3
Figure 1 depicts examples of technologies in the IoB
ecosystem that are either already available on the U.S.
market or are under development.
Devices that are not connected to the internet,
such as ordinary heart monitors or medical ID bracelets, are not included in the definition of IoB. Nor are implanted magnets (a niche consumer product used
by those in the so-called bodyhacker community
described in the next section) that are not connected
to smartphone applications (apps), because although
they change the body’s functionality by allowing the
user to sense electromagnetic vibrations, the devices
do not contain software. Trends in IoB technologies
and additional examples are further discussed in the
next section.
Some IoB devices may fall in and out of
our definition at different times. For example, a
Wi-Fi-connected smartphone on its own would
not be part of the IoB; however, once a health app
is installed that requires connection to the body to
track user information, such as heart rate or number
of steps taken, the phone would be considered IoB.
Our definition is meant to capture rapidly evolving
technologies that have the potential to bring about
the various risks and benefits that are discussed in
this report. We focused on analyzing existing and
emerging IoB technologies that appear to have the
potential to improve health and medical outcomes,
efficiency, and human function or performance, but
that could also endanger users’ legal, ethical, and
privacy rights or present personal or national security
risks.
For this research, we conducted an extensive
literature review and interviewed security experts,
technology developers, and IoB advocates to understand anticipated risks and benefits. We had valuable discussions with experts at BDYHAX 2019, an
annual convention for bodyhackers, in February
2019, and DEFCON 27, one of the world’s largest
hacker conferences, in August 2019. In this report,
we discuss trends in the technology landscape and
outline the benefits and risks to the user and other
stakeholders. We present the current state of governance that applies to IoB devices and the data they
collect and conclude by offering recommendations
for improved regulation to best balance those risks
and rewards.

Operation Warp Speed logo

Transhumanism, Bodyhacking, Biohacking,
and More


The IoB is related to several movements outside of formal health care focused on integrating human bodies
with technology. Next, we summarize some of these concepts,
though there is much overlap and interchangeability among them.
Transhumanism is a worldview and political movement advocating for the transcendence of humanity beyond current human capabilities.
Transhumanists want to use technology, such as
artificial organs and other techniques, to halt aging
and achieve “radical life extension” (Vita-Moore,
2018). Transhumanists may also seek to resist disease,
enhance their intelligence, or thwart fatigue through
diet, exercise, supplements, relaxation techniques, or
nootropics (substances that may improve cognitive
function).
Bodyhackers, biohackers, and cyborgs, who
enjoy experimenting with body enhancement, often
refer to themselves as grinders. They may or may not
identify as transhumanists. These terms are often
interchanged in common usage, but some do distinguish between them (Trammell, 2015). Bodyhacking
generally refers to modifying the body to enhance
one’s physical or cognitive abilities. Some bodyhacking is purely aesthetic. Hackers have implanted horns
in their heads and LED lights under their skin. Other
hacks, such as implanting RFID microchips in one’s
hand, are meant to enhance function, allowing users
to unlock doors, ride public transportation, store
emergency contact information, or make purchases
with the sweep of an arm (Baenen, 2017; Savage,
2018). One bodyhacker removed the RFID microchip from her car’s key fob and had it implanted
in her arm (Linder, 2019). A few bodyhackers have
implanted a device that is a combined wireless router
and hard drive that can be used as a node in a wireless mesh network (Oberhaus, 2019). Some bodyhacking is medical in nature, including 3D-printed
prosthetics and do-it-yourself artificial pancreases.
Still others use the term for any method of improving
health, including bodybuilding, diet, or exercise.
Biohacking generally denotes techniques that
modify the biological systems of humans or other
living organisms. This ranges from bodybuilding
and nootropics to developing cures for diseases via
self-experimentation to human genetic manipulation
through CRISPR-Cas9 techniques (Samuel, 2019;
Griffin, 2018).
Cyborgs, or cybernetic organisms, are people
who have used machines to enhance intelligence or
the senses.
Neil Harbisson, a colorblind man who can
“hear” color through an antenna implanted in his
head that plays a tune for different colors or wavelengths of light, is acknowledged as the first person to
be legally recognized by a government as a cyborg, by
being allowed to have his passport picture include his
implant (Donahue, 2017).
Because IoB is a wide-ranging field that
intersects with do-it-yourself body modification,
consumer products, and medical care, understanding
its benefits and risks is critical.

The Internet of Bodies is here. This is how it could change our lives

04 Jun 2020, Xiao Liu Fellow at the Centre for the Fourth Industrial Revolution, World Economic Forum

  • We’re entering the era of the “Internet of Bodies”: collecting our physical data via a range of devices that can be implanted, swallowed or worn.
  • The result is a huge amount of health-related data that could improve human wellbeing around the world, and prove crucial in fighting the COVID-19 pandemic.
  • But a number of risks and challenges must be addressed to realize the potential of this technology, from privacy issues to practical hurdles.

In the special wards of Shanghai’s Public Health Clinical Center, nurses use smart thermometers to check the temperatures of COVID-19 patients. Each person’s temperature is recorded with a sensor, reducing the risk of infection through contact, and the data is sent to an observation dashboard. An abnormal result triggers an alert to medical staff, who can then intervene promptly. The gathered data also allows medics to analyse trends over time.

The smart thermometers are designed by VivaLNK, a Silicon-Valley based startup, and are a powerful example of the many digital products and services that are revolutionizing healthcare. After the Internet of Things, which transformed the way we live, travel and work by connecting everyday objects to the Internet, it’s now time for the Internet of Bodies. This means collecting our physical data via devices that can be implanted, swallowed or simply worn, generating huge amounts of health-related information.

Some of these solutions, such as fitness trackers, are an extension of the Internet of Things. But because the Internet of Bodies centres on the human body and health, it also raises its own specific set of opportunities and challenges, from privacy issues to legal and ethical questions.

Image: McKinsey & Company

Connecting our bodies

As futuristic as the Internet of Bodies may seem, many people are already connected to it through wearable devices. The smartwatch segment alone has grown into a $13 billion market by 2018, and is projected to increase another 32% to $18 billion by 2021. Smart toothbrushes and even hairbrushes can also let people track patterns in their personal care and behaviour.

For health professionals, the Internet of Bodies opens the gate to a new era of effective monitoring and treatment.

In 2017, the U.S. Federal Drug Administration approved the first use of digital pills in the United States. Digital pills contain tiny, ingestible sensors, as well as medicine. Once swallowed, the sensor is activated in the patient’s stomach and transmits data to their smartphone or other devices.

In 2018, Kaiser Permanente, a healthcare provider in California, started a virtual rehab program for patients recovering from heart attacks. The patients shared their data with their care providers through a smartwatch, allowing for better monitoring and a closer, more continuous relationship between patient and doctor. Thanks to this innovation, the completion rate of the rehab program rose from less than 50% to 87%, accompanied by a fall in the readmission rate and programme cost.

The deluge of data collected through such technologies is advancing our understanding of how human behaviour, lifestyle and environmental conditions affect our health. It has also expanded the notion of healthcare beyond the hospital or surgery and into everyday life. This could prove crucial in fighting the coronavirus pandemic. Keeping track of symptoms could help us stop the spread of infection, and quickly detect new cases. Researchers are investigating whether data gathered from smartwatches and similar devices can be used as viral infection alerts by tracking the user’s heart rate and breathing.

At the same time, this complex and evolving technology raises new regulatory challenges.

What counts as health information?

In most countries, strict regulations exist around personal health information such as medical records and blood or tissue samples. However, these conventional regulations often fail to cover the new kind of health data generated through the Internet of Bodies, and the entities gathering and processing this data.

In the United States, the 1996 Health Insurance Portability and Accountability Act (HIPPA), which is the major law for health data regulation, applies only to medical providers, health insurers, and their business associations. Its definition of “personal health information” covers only the data held by these entities. This definition is turning out to be inadequate for the era of the Internet of Bodies. Tech companies are now also offering health-related products and services, and gathering data. Margaret Riley, a professor of health law at the University of Virginia, pointed out to me in an interview that HIPPA does not cover the masses of data from consumer wearables, for example.

Another problem is that the current regulations only look at whether the data is sensitive in itself, not whether it can be used to generate sensitive information. For example, the result of a blood test in a hospital will generally be classified as sensitive data, because it reveals private information about your personal health. But today, all sorts of seemingly non-sensitive data can also be used to draw inferences about your health, through data analytics. Glenn Cohen, a professor at Harvard Law school, told me in an interview that even data that is not about health at all, such as grocery shopping lists, can be used for such inferences. As a result, conventional regulations may fail to cover data that is sensitive and private, simply because it did not look sensitive before it was processed.

Data risks

Identifying and protecting sensitive data matters, because it can directly affect how we are treated by institutions and other people. With big data analytics, countless day-to-day actions and decisions can ultimately feed into our health profile, which may be created and maintained not just by traditional healthcare providers, but also by tech companies or other entities. Without appropriate laws and regulations, it could also be sold. At the same time, data from the Internet of Bodies can be used to make predictions and inferences that could affect a person’s or group’s access to resources such as healthcare, insurance and employment.

James Dempsey, director of the Berkeley Center for Law and Technology, told me in an interview that this could lead to unfair treatment. He warned of potential discrimination and bias when such data is used for decisions in insurance and employment. The affected people may not even be aware of this.

One solution would be to update the regulations. Sandra Wachter and Brent Mittelstadt, two scholars at the Oxford Internet Institute, suggest that data protection law should focus more on how and why data is processed, and not just on its raw state. They argue for a so-called “right to reasonable inferences”, meaning the right to have your data used only for reasonable, socially acceptable inferences. This would involve setting standards on whether and when inferring certain information from a person’s data, including the state of their present or future health, is socially acceptable or overly invasive.

Practical problems

Apart from the concerns over privacy and sensitivity, there are also a number of practical problems in dealing with the sheer volume of data generated by the Internet of Bodies. The lack of standards around security and data processing makes it difficult to combine data from diverse sources, and use it to advance research. Different countries and institutions are trying to jointly overcome this problem. The Institute of Electrical and Electronics Engineers (IEEE) and its Standards Association have been working with the US Food & Drug Administration (FDA), National Institutes of Health, as well as universities and businesses among other stakeholders since 2016, to address the security and interoperability issue of connected health.

As the Internet of Bodies spreads into every aspect of our existence, we are facing a range of new challenges. But we also have an unprecedented chance to improve our health and well-being, and save countless lives. During the COVID-19 crisis, using this opportunity and finding solutions to the challenges is a more urgent task than ever. This relies on government agencies and legislative bodies working with the private sector and civil society to create a robust governance framework, and to include inferences in the realm of data protection. Devising technological and regulatory standards for interoperability and security would also be crucial to unleashing the power of the newly available data. The key is to collaborate across borders and sectors to fully realize the enormous benefits of this rapidly advancing technology.

Now more from the Rand Corporation

Governance of IoB devices is managed through a patchwork of state and federal agencies, nonprofit organizations, and consumer advocacy groups

  • The primary entities responsible for governance of IoB devices are the FDA and the U.S. Department of Commerce.
  • Although the FDA is making strides in cybersecurity of medical devices, many IoB devices, especially those available for consumer use, do not fall under FDA jurisdiction.
  • Federal and state officials have begun to address cybersecurity risks associated with IoB that are beyond FDA oversight, but there are few laws that mandate cybersecurity best practices.

As with IoB devices, there is no single entity that provides oversight to IoB data

  • Protection of medical information is regulated at the federal level, in part, by HIPAA.
  • The Federal Trade Commission (FTC) helps ensure data security and consumer privacy through legal actions brought by the Bureau of Consumer Protection.
  • Data brokers are largely unregulated, but some legal experts are calling for policies to protect consumers.
  • As the United States has no federal data privacy law, states have introduced a patchwork of laws and regulations that apply to residents’ personal data, some of which includes IoB-related information.
  • The lack of consistency in IoB laws among states and between the state and federal level potentially enables regulatory gaps and enforcement challenges.

Recommendations

  • The U.S. Commerce Department can put foreign IoB companies on its “Entity List,” preventing them from doing business with Americans, if those foreign companies are implicated in human rights violations.
  • As 5G, Wi-Fi 6, and satellite internet standards are rolled out, the federal government should be prepared for issues by funding studies and working with experts to develop security regulations.
  • It will be important to consider how to incentivize quicker phase-out of the legacy medical devices with poor cybersecurity that are already in wide use.
  • IoB developers must be more attentive to cybersecurity by integrating cybersecurity and privacy considerations from the beginning of product development.
  • Device makers should test software for vulnerabilities often and devise methods for users to patch software.
  • Congress should consider establishing federal data transparency and protection standards for data that are collected from the IoB.
  • The FTC could play a larger role to ensure that marketing claims about improved well-being or specific health treatment are backed by appropriate evidence.

ALSO READ: BOMBSHELL! 5G NETWORK TO WIRELESSLY POWER DEVICES. GUESS WHAT IT CAN DO TO NANOTECH (DARPA-FINANCED)

Internet of Bodies (IoB): Future of Healthcare & Medical Technology

Kashmir Observer | March 27, 2021   

By Khalid Mustafa

JAMMU and Kashmir is almost always in the news for one reason or another.  Apart from the obvious political headlines, J&K was also in the news because of covid-19.  As the world struggled with covid-19 pandemic, J&K faced a peculiar situation due to its poor health infrastructure.  Nonetheless, all sections of society did a commendable job in keeping covid  under control and preventing the loss of life as much as possible. The doctors Association in Kashmir along with the administration did  as much as possible  through their efforts.  For that we are all thankful to them. However, it is about time that we integrate our Healthcare System by upgrading it and introducing to it new technologies from the current world.

We’ve all heard of the Internet of Things, a network of products ranging from refrigerators to cars to industrial control systems that are connected to the internet. Internet of Bodies (IoB) the outcome of the Internet of Things (IoT) is broadly helping the healthcare system and every individual to live life with ease by managing the human body in terms of technology. The Internet of Bodies connects the human body to a network of internet run devices.

The use of IoB can be independent or by the health care heroes (doctors) to monitor, report and enhance the health system of the human body.  The internet of Bodies (IoB) are broadly classified into three categories or in some cases we can say three generations – Body Internal, Body External and Body embedded. The Body Internal model of IoB is the category, in which the individual or patient is interacting with the technology environment or we can say internet or our healthcare system by having an installed device inside the human body. Body External model or generation of IoB signifies the model where the device is installed external to the body for certain usage viz. Apple watches and other smart bands from various OEM’s for tracking blood pressure, heart rate etc which can later be used for proper health tracking and monitoring purposes. Last one under this classifications are Body Embedded, in which the devices are embedded under the skin by health care professionals during a number of health situations.

The Internet of Bodies is a small part or even the offspring of the Internet of Things. Much like it, there remains the challenge of data and information breach as we have already witnessed many excessive distributed denial of service (DDos) attacks and other cyber-attacks on IoTs to exploit data and gather information. The effects are even more severe and vulnerable in the case of the Internet of Bodies as the human body is involved in this schema.

The risk of these threats has taken over the discussion about the IOBs.  Thus,  this  has become a  great concern in medical technology companies. Most of the existing IoB companies just rely on end-user license agreements and privacy policies to retain rights in software and to create rights to monitor, aggregate and share users’ body data. They just need to properly enhance the security model and implement high security measures to avoid any misfortune. For the same the Government of India is already examining the personal data protection bill 2019.

The Internet has not managed to change our lifestyles in the way the internet of things will!


Views expressed in the article are the author’s own and do not necessarily represent the editorial stance of Kashmir Observer

  • The author is presently Manager IT & Ops In HK Group

ALSO READ: OBAMA, DARPA, GSK AND ROCKEFELLER’S $4.5B B.R.A.I.N. INITIATIVE – BETTER SIT WHEN YOU READ

And this is some old DARPA research anticipating the hive mind:

Hierarchical Identify Verify Exploit (HIVE)

Dr. Bryan Jacobs

Hierarchical Identify Verify Exploit (HIVE)

Social media, sensor feeds, and scientific studies generate large amounts of valuable data. However, understanding the relationships among this data can be challenging. Graph analytics has emerged as an approach by which analysts can efficiently examine the structure of the large networks produced from these data sources and draw conclusions from the observed patterns. By understanding the complex relationships both within and between data sources, a more complete picture of the analysis problem can be understood. With lessons learned from innovations in the expanding realm of deep neural networks, the Hierarchical Identify Verify Exploit (HIVE) program seeks to advance the arena of graph analytics.

The HIVE program is looking to build a graph analytics processor that can process streaming graphs 1000X faster and at much lower power than current processing technology. If successful, the program will enable graph analytics techniques powerful enough to solve tough challenges in cyber security, infrastructure monitoring and other areas of national interest. Graph analytic processing that currently requires racks of servers could become practical in tactical situations to support front-line decision making. What ’s more, these advanced graph analytics servers could have the power to analyze the billion- and trillion-edge graphs that will be generated by the Internet of Things, ever-expanding social networks, and future sensor networks.

In parallel with the hardware development of a HIVE processor, DARPA is working with MIT Lincoln Laboratory and Amazon Web Services (AWS) to host the HIVE Graph Challenge with the goal of developing a trillion-edge dataset. This freely available dataset will spur innovative software and hardware solutions in the broader graph analysis community that will contribute to the HIVE program.

The overall objective is to accelerate innovation in graph analytics to open new pathways for meeting the challenge of understanding an ever-increasing torrent of data. The HIVE program features two primary challenges:

  • The first is a static graph problem focused on sub-graph Isomorphism. This task is to further the ability to search a large graph in order to identify a particular subsection of that graph.
  • The second is a dynamic graph problem focused on trying to find optimal clusters of data within the graph.

Both challenges will include a small graph problem in the billions of nodes and a large graph problem in the trillions of nodes.

ALSO READ: BEFORE MRNA AND WUHAN, DARPA FUNDED THE BIRTH OF GOOGLE, FACEBOOK AND THE INTERNET ITSELF

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

As Klaus Schwab promised, The Great Reset / 4th Industrial Revolution is “a tsunami of digitalization”.
Sorry I didn’t have time to make a story today, life’s hard and likely short now.
However, the resources below follow a storyline.

Since 2014, the Smart Water Summit has been bringing Vendor Partners together with North American Water Utilities – in an intimate setting to begin updating technology and improving North American Water Utility Infrastructure. The Smart Water Summit is a quality, hands-on experience where high level Utility Executives interact with Industry Leading Vendors, analysts and federal agencies. Summit Attendees are able to stay current with the latest advances in technology by participating in Vendor Boardroom Presentations, The Summit Solution Showcase, and Executive Premier Presentations.

They’re simply spying on the waste-water and, if you pay attention they’re not just screening for viruses!

Graphene smart membranes can control water

by University of Manchester

JULY 12, 2018

Graphene smart membranes can control water
Credit: University of Manchester

Researchers at The University of Manchester’s National Graphene Institute (NGI) have achieved a long-sought-after objective of electrically controlling water flow through membranes, as reported in Nature.

This is the latest exciting membranes development benfitting from the unique properties of graphene. The new research opens up an avenue for developing smart membrane technologies and could revolutionise the field of artificial biological systems, tissue engineering and filtration.

Graphene is capable of forming a tuneable filter or even a perfect barrier when dealing with liquids and gases. New ‘smart’ membranes developed using an inexpensive form of graphene called graphene oxide, have been demonstrated to allow precise control of water flow by using an electrical current. The membranes can even be used to completely block water from passing through when required.

Is this what water does after attending classes at a liberal college?
We need to find the location of these people to see if they got any ‘smart water’ projects going on there!

The team, led by Professor Rahul Nair, embedded conductive filaments within the electrically insulating graphene oxide membrane. An electric current passed through these nano-filaments created a large electric field which ionises the water molecules and thus controls the water transport through the graphene capillaries in the membrane.

Prof Nair said: “This new research allows us to precisely control water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for further developing smart membrane technologies.

“Developing smart membranes that allow precise and reversible control of molecular permeation using external stimuli would be of intense interest for many areas of science; from physics and chemistry, to life-sciences.

The achievement of electrical control of water flow through membranes is a step change because of its similarity to several biological process where the main stimuli are electrical signals. Controlled water transport is a key for renal water conservation, regulation of body temperature and digestion. The reported electrical control of water transport through graphene membranes therefore opens a new dimension in developing artificial biological systems and advanced nanofluidic devices for various applications.

Previously, the research group have demonstrated that graphene oxide membranes can be used as a sieve to remove salt from seawater for desalination alternatives. Last year they also showed that the membranes could remove the colour pigment from whisky without affecting its other properties.

For the ground breaking research in graphene-based membranes, Professor Andre Geim and Professor Rahul Nair have won 8th Award of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW)

Scientists have long been trying to control water flow through membrane by using an external stimuli due to its importance for healthcare and related areas. Currently, such adjustable membranes are limited to the modulation of wetting of the membranes and controlled ion transport, but not the controlled mass flow of water.

Dr. Kai-Ge Zhou, lead author for the research paper said, “The reported graphene smart membrane technology is not just limited to controlling the water flow. The same membrane can be used as a smart adsorbent or sponge. Water adsorbed on the membrane can be preserved in the membrane even in desert conditions if a current is applied. We could release this water on demand by switching the current off.”

Dr. Vasu, second lead author commented, “Our work not only opens new applications for graphene membranes but it allows us to understand the effect of electrical field on the nanoscale properties of confined water. Despite many conflicting theoretical predictions ranging from freezing of water molecules to melting of ice under an electric field, the experimental evidence for electric field effects were missing. Our work shows that large electric field can ionise water in to its constituent ions.”

The work was done in collaboration with scientists from the University of York, Shahid Rajaee Teacher Training University, Iran, and the University of Antwerpen, Belgium.

Graphene and related two-dimensional materials have shown promise for developing new applications as well as enhancing currently used processes for areas as diverse as; electronics, composites, sensors and biomedical. Membranes have become as key research and development theme for desalination, gas separation and healthcare.

The Premier Forum for Water Leakage and Smart Water Technologies

Welcome to the Smart Water Utilities USA 2021 Exhibition and Conference where global water utilities and network services will meet with water leakage experts and smart water technology providers in California to explore efficient and cost-effective solutions for the water utilities industry.

Water is one of the most valuable resources across the globe and as rapid urbanisation has led to the rise in water demand, pressures across the water network caused by climate change and an ageing infrastructure have significantly impacted the availability of water. Non-revenue water (NRW) is water that is lost before it reaches end users, with water leakage being a key contributor of global water loss, currently valued at $40 billion per year, which is now driving the demand for smart technology solutions.

The face of water supply networks is fast changing as operators navigate through the ‘digital water age’ and introduce new technologies across their water networks with advances in IoT and AI for network automation and control to efficiently manage and reduce water leakage. As operators work to meet new regulations and leakage targets, new initiatives towards more efficient water networks have become essential in order to satisfy an ever-increasing demand for water.

With new developments in smart water technologies and technical know-how, recent advancements in leak detection offer new hope for water companies looking for operational efficiencies under challenging market conditions, and to better manage their water networks. The Smart Water Utilities USA 2021 event is set to become the region’s leading exhibition and conference exclusively for water companies and smart water technology experts, to present new solutions for water leakage and how to develop smarter systems across their water networks.

The key focus for this year’s conference will be to “efficiently manage and reduce water leakage”, and the objective will be to bring water utilities and network services together with leading industry experts to collaborate and examine new opportunities in smart water technologies, and to address the key challenges in water utilities from a global perspective.

Key topics on this year’s agenda include:

  • Making an economic assessment for water utilities development
  • Integrating smart water technologies into existing water infrastructure
  • Strategies for managing and reducing water leakage across the network
  • Looking at real-time data and cutting-edge communication technologies
  • New technologies and know-how in IoT and AI for network automation
  • End-user case studies and how to develop an optimal network

This exhibition and conference will provide a forum for all stakeholders from water utilities and network service providers to leading water leakage experts and smart technology companies, to network and build cross-market relationships, and to discuss the latest results in smart water networks for the benefit of the water utilities industry.

Milestone contract for graphene technology in water treatment

Smart Water Magazine 

Milestone contract for graphene technology in water treatment
  • UK technology business awarded first commercial business contract for industrial wastewater treatment
  • Graphene technology slashes energy costs and reduces fouling for water treatment
  • Initial applications in commercial laundry, produced water, food, beverages and dairy industries

30/07/2021

Companies

G2O Water Technologies

G2O is a fast-growing technology business with a portfolio of products that reduce the cost and environmental impact of water treatment. Our products harness the transformational potential of 2D materials, such as Graphene Oxide.

INDUSTRIAL |WATER TREATMENT

UK technology business G2O Water Technologies has landed its first commercial contract for the enhancement of water filtration membranes with graphene oxide. This is particularly significant for both the technology company as well as the water sector globally, as it is the first commercially successful application of the recently developed “wonder” material for water treatment.

The advantages of using graphene oxide lie in the enhancement of membrane performance, as it mitigates the effects of fouling – one of the biggest challenges operators of membrane-based water filtration systems face. With a coating of graphene oxide, successfully developed and piloted by the company in the northwest of England in collaboration with Hydrasyst Limited, operators can improve operational efficiency, reduce energy consumption and decrease chemical usage. It is anticipated that this will extend the lifetime of the membranes, as well as significantly reducing the cost and environmental impact of water treatment.

Hydrasyst, the earliest adopter of the technology, is a British turnkey solution provider of advanced membrane technology systems, particularly in industrial processes. Commenting on its work with G2O, Managing Director Kyle Wolff stated, “We’re thrilled to have been closely involved for some time now with the piloting and application of G2O Water Technology’s graphene oxide coatings. They have ultimately succeeded in proving their value for some of the most difficult water treatment challenges our customers face; for example in the industrial laundry sector. With the graphene oxide coating, our ceramic hollow-fibre membrane systems deliver significant operational advantages, enabling end-users to enhance the efficiency of their water usage, whilst delivering significant savings in  energy costs .”

“This is a significant milestone for the company and the whole water sector. It’s the first commercially successful application of graphene oxide for water treatment”, said Chris Wyres, CEO of G2O Technologies. “The results of industrial trials with Hydrasyst validate the real-world advantages the solution delivers. We will be working closely with Hydrasyst to roll-out Nanopulse systems for a range of water treatment applications. We envisage that wide-scale deployment of this transformational solution can contribute to addressing the challenges of water scarcity and climate change.”

https://g2owatertech.com/

Membrane Technology Business Accelerating Growth Plans

July 27, 2021 –wateronline.com/

  • UK technology business completes equity funding boost
  • Investors back G2O to accelerate growth
  • Significant potential demonstrated in industrial, oil and gas, food & beverage and energy sectors

UK technology business G2O Water Technologies recently completed an equity funding round, with existing and new investors backing the business to accelerate growth.

G2O’s innovative graphene oxide coating products that reduce the cost and environmental impact of water treatment, have developed significant market traction, with a rapidly growing pipeline of opportunities across a broad range of sectors including industrial, oil & gas, food & beverage and domestic water filtration.

Chris Wyres, CEO of G2O stated “Strong market traction for our Graphene oxide coating products has enabled us to secure additional capital from investors to accelerate growth and delivery of the strong pipeline of opportunities we have generated. As part of this strategy, we will be expanding our facilities and team, ramping up marketing and business development and commercialising an exciting range of new products.”

The company will be focusing on converting a rapidly growing pipeline of opportunities, gearing the business to support partners and expedite progression through prototyping and industrial testing. G2O are currently applying their innovative technology to solve critical challenges in a broad range of water treatment processes, including desalination and the oil and gas, food and beverage and energy sectors. In each case, the proven solutions deliver enhanced operational efficiency, reducing energy costs, maintenance and chemical usage, as well as extending the lifetime of the membranes. This enables end-users to not only reduce costs, but also to minimise their environmental impact and contribute to addressing climate change.

“We’re delighted that all our current investors have recognised the excellent progress made by the company in the last 12 months and have continued to support us. It is also a pleasure to welcome our new industrial investors to G2O, which is a tremendous vote of confidence in the future of the company. The timing of this investment comes as the company has just achieved a key milestone with the signing of its first commercial licensing agreement and I look forward to an exciting future as we progress through to full scale commercialisation of the technology with our development partners.” commented Andrew Greenaway, Chairman of G2O

Smart water-based ferrofluid with stable state transition property: Preparation and its application in anionic dye removal

Source: https://doi.org/10.1016/j.jclepro.2020.125003

Abstract

This article reports a smart water-based ferrofluid that can transform from stable state to unstable state for separating the contained magnetic nanoparticles after use.

The ferrofluid is synthesized by preparing polyethylenimine modified Fe3O4 nanoparticles via a one-pot method, and then improved by acidification treatment and ultracentrifugation-based washing. The resultant ferrofluid and intermediate products have been systematically characterized, verifying that the ferrofluid possesses superparamagnetism, high saturation magnetization as well as strong colloidal stability, and the magnetic nanoparticles contained in the ferrofluid have small aggregation size, strong electropositivity and high saturation magnetization.

It has been confirmed that the acidification treatment and ultracentrifugation-based washing greatly activate the positive charge and reduce the aggregation size of polyethylenimine modified Fe3O4 nanoparticles, which is the key to our successful synthesis of this new type of ferrofluid. Furthermore, the adsorption behavior of the ferrofluid on the anionic Ponceau S dye has been systematically investigated, demonstrating that the ferrofluid can adsorb anionic Ponceau S dye in a short time (<5 min) with a maximum adsorption capacity of 140.26 mg/g.

The experimental data show that the adsorption kinetics follows the pseudo-second-order mode and the Langmuir isotherm model is applicable to describe the adsorption processes.

Importantly, the magnetic nanoparticles in the ferrofluid can be easy to separate from solution after adsorbing anionic Ponceau S dye, preventing secondary pollution and showing great potential in wastewater treatment.

GRAPHIL: The Future of Innovative Portable Household Water Filters

By Dr Parva Chhantyal, PhD. Oct 6 2020

GRAPHIL, the new Spearhead project, brings together Icon Lifesaver (UK), Medica SpA (Italy) and Polymem S.A (France) along with other academic partners, Chalmers Institute of Technology (Sweden), Manchester University (UK), and the National Research Council (Italy). The consortium is committed to the production of innovative filters for household water treatment. 

According to WHO and UNICEF, 2.2 billion people lacked access to safe drinking water in 2019 (United Nations, n.d.). Each year, approximately 88% of the four billion worldwide annual cases of diarrhea have been attributed to a lack of safe drinking water (Schroth, Lanfair, & Ambulkar, n.d.).

The Graphil project responds to the urgency of producing an easy to use microfiltration membrane that can be connected directly onto a household sink or used as a portable device for water purification. The filter is expected to go into the market in 2023 and can remove contaminants, pesticides, heavy metals, and dangerous pathogens from drinking water (Graphene Flagship, 2019). 

Water Purification

The undesired chemical compounds, organic and inorganic materials, and biological contaminants, such as suspended particles, parasites, bacteria, algae, viruses, and fungi are removed from water through multiple physical, chemical, or biological processes (Schroth, Lanfair, & Ambulkar, n.d.).

In the United States, the safety of drinking water quality is regulated by the United States Environmental Protection Agency (EPA), whereas the European Union is regulated by Article 10 of the EU Drinking Water Directive (Directive 98/83/EC) (European Drinking Water, n.d.). On 18 February 2020, the environment and public health committee updated the EU rules of drinking tap water, which is expected to update quality standards and sets out minimum hygiene requirements for materials in contact with drinking water (European Parliament, 2020).

In Europe, most countries use chlorine as a drinking water disinfectant since the discovery of water disinfectant abilities in 1905 by the London Metropolitan Water Board. The U.S quickly followed the use of Chlorine, reaching 64% of all community water systems by 1995 (Centers for Disease Control and Prevention, 2015). According to the WHO, the standard drinking water state is 2-3 mg/L chlorine to achieve satisfactory drinking water (Lenntech, n.d.). 

Portable Water Filtration

The filter membrane performance depends on the amount of water passing through the membrane per unit of time and surface area, and the concentration ratio of a component between the filtered particles and the feed water solution.

Following the discovery of Graphair (Smith, 2020), a conventional one-step water filtration system by a team of scientists from Commonwealth Scientific and Industrial Research Organization (CSIRO), graphene has successfully entered as a competitive next-generation solution for the portable water purification process. Graphair is a 4 cm2 graphene film filtration membrane with microscopic nano-channels that prevents larger contaminants such as salt enter the water (Bold Business, 2018). The filter was proved to be low-cost, removing 99% of impurities faster than other conventional filters without using chlorine. 

Graphene as a Water Filter Membrane

Graphene’s large surface area, versatile surface chemistry, and exceptional mechanical properties allow it to bind ions and metals. This process reduces the number of inorganic contaminants in water. The graphene-based membrane also offers a simpler setup compared to other traditional membranes, such as reverse osmosis and microfiltration train systems, leading to lower operating pressure and maintenance costs for end-users.

Last year, the researchers from Russia’s National University of Science and Technology (MISiS), Derzhavin Tambov State University, and Saratov Chernyshevsky State University experimented with graphene oxide to purify water by injecting graphene oxide into E. coli containing saline solutions. The results demonstrated the bacterias forming flakes inside the solution along with the graphene oxide, which can be easily extracted, making water free of bacteria (Smart Water Magazine, 2019).

Find out more about graphene and graphene-based products here

HOW NEW MATERIAL GRAPHENE CAN MAKE SMART HOMES SMARTER

 realtyexecutives.com

Originally published in inman.com.

We are in an era where sustainability, energy savings, solar options, innovations, engineering and smart home tech knowledge are all extremely important to consumers, business leaders and employees trying to make a difference in the world. In 2018 alone, the U.S. spent $19.8 billion on smart home technology. I predict a new material called graphene will revolutionize the smart home industry and become a key factor in smart home technology advancements and innovations.

Although there have been attempts to study graphene since the mid-1800s, it wasn’t until 2004 when scientists discovered and isolated a single atomic layer of carbon for the first time. Since then, research has skyrocketed, and graphene is now considered to be the strongest substance known to science and might be one of the world’s most useful “wonder” materials.

Graphene forms a nearly transparent, flexible sheet about one atom thick (which, to put in perspective, is one million times smaller than the diameter of a single human hair). It is 200 times stronger than steel yet six times lighter. It is a conductor of electrical and thermal energy, and it is eco-friendly and sustainable, with unlimited possibilities to create the perfect smart home (and more).

Smart building

Concrete is the most common building material, along with steel, but greenhouse gas emissions from concrete and cement-making remain high. Cement-making accounts for 6 percent of global carbon emissions.

Use of graphene, when incorporated into concrete and cement, makes for a stronger, more water-resistant composite material that could reduce emissions. This material can be used directly on building sites, enabling the construction of strong and durable buildings using less concrete and reducing greenhouse gas emissions. This process reduces roughly half the amount of materials used to make concrete, all at a lower cost.

Smart paint

Imagine being able to paint your house with a special coating that changes color when it senses that the underlying structure is in need of repairs. Researchers have created a smart graphene coating that indicates breaks and fractures by changing color. This could revolutionize the home inspection process.

Graphene also has been used to make eco-friendly paint. Because graphene is a superconductor, the addition of graphene to paint can improve the thermal regulation of buildings, requiring less heating and air conditioning. Graphene’s inclusion in paints, coatings and other building materials greatly enhances strength, durability and coverage.

Smart solar

Solar panels on a home are a great source of energy. Graphene can be made into transparent solar cells that can turn virtually any surface into a source of electric power. This technology could give homeowners the opportunity to turn something like a garage door, window or roof into a solar conductor, all while maintaining the desired look of the home.

Smart light

Glowing walls could soon replace the light bulb, allowing for the introduction of glowing “wallpaper.” This would provide a more pleasant, adjustable light across a room compared to lightbulbs, and it can also be made more energy-efficient.

It’s also a highly efficient conductor of both heat and electricity and conducts electricity better than copper.

Smart sound

To produce sound, regular speakers create a pressure wave in the air by physically moving back and forth. Graphene can create a non-moving solid-state audio device that would eliminate the need for a large sound system and speakers.

Researchers believe they can incorporate speakers into ultra-thin touch screen technologies, in which the screen is able to produce sound on its own and could probably be incorporated onto walls.

Smart battery

Graphene can make batteries that are light, durable and suitable for high capacity energy storage, as well as shorten charging times. It will extend the battery’s lifetime and will add conductivity without requiring the amounts of carbon that are used in conventional batteries. Graphene can also be used to create new batteries that recharge quickly.

Smart water

Water conservation is a high priority in our country. It is expected that by 2020, 25 million people (in seven states), including Arizona and Nevada, will be forced to cut back on water usage as Lake Mead and Lake Powell essentially run dry. Graphene membranes can be used as water filters, filtering 85 percent of salt out of seawater.

Although this percentage is not quite pure enough for drinking purposes, it is perfect for agricultural and landscaping use. This can help regions affected by the drought, that are located near large bodies of water and maintain modern, low-water landscaping using a better eco-friendy solution.

Combining all of graphene’s amazing properties could create a holistic impact on the world of smarter homes, and its participation as a change agent is not far away.

Household Water Filtering

The Water Resource Group notifies that the worldwide water supply-to-demand gap is likely to reach approximately 40% by 2030, which warns the issue of water scarcity to be a worldwide priority.

Although already-existing water filtration methods shown in the following table have controlled the market (European Commision, 2010), they are expensive, complicated or highly inaccurate, which prevents most parts of the world from getting access to clean drinking water. (Shull, 2012):

Filtration MethodParticle Capture SizeContaminants Removed
Microfiltration0.1-10 µm suspended solids, bacteria, protozoa
Ultrafiltrationca.0.003-0.1 µmcolloids, proteins, polysaccharides, most bacteria, viruses (partially)
Nanofiltrationca.0.001 µmviruses, natural organic matter, multivalent ions
Reverse Osmosisca.0.0001 µmalmost all impurities, including monovalent ions

The Graphil project has helped to develop affordable and easy to use portable or household water filters. According to Mrs. Letizia Bocchi, who is the leader of the project, their filters are made with hollow plastic fiber membranes blended with graphene to enhance the adsorption of chemical contaminants (Diamante, 2020). Once completed, the Graphil filters could be directly mounted on a household water filtration system or portable water purifier devices, which also means a reduction in bottled water consumption, contributing to positive environmental impacts.

References and Further Reading

Bold Business. (2018). Graphair Water Filter — A Graphene Film Making Polluted Water Drinkable. [Online] Bold Business: https://www.boldbusiness.com/health/graphair-water-filter-polluted-drinkable/ (Accessed on 04 October, 2020)

Centers for Disease Control and Prevention. (2015). Disinfection with Chlorine. [Online] Centers for Disease Control and Prevention: https://www.cdc.gov/healthywater/drinking/public/chlorine-disinfection.html (Accessed on 04 October, 2020)

Diamante, L. (2020). Spotlight: Exploring Graphil’s graphene-based water filters with Letizia Bocchi. [Online] Graphene Flagship: https://graphene-flagship.eu/news/Pages/Spotlight-Exploring-Graphil%E2%80%99s-graphene-based-water-filters-with-Letizia-Bocchi.aspx (Accessed on 04 October, 2020)

European Commision. (2010). Membrane technologies for water applications. Brussels. doi:10.2777/25163

European Drinking Water. (n.d.). Background. [Online] from European Drinking Water: https://www.europeandrinkingwater.eu/initiative/background/ (Accessed on 04 October, 2020)

European Parliament. (2020). Drinking water in the EU: better quality and access. [Online] News European Parliament: https://www.europarl.europa.eu/news/en/headlines/society/20181011STO15887/drinking-water-in-the-eu-better-quality-and-access (Accessed on 04 October, 2020)

Graphene Flagship. (2019). Purifying Europe’s Water with Graphene Filtration. [Online] Graphene Flagship: https://graphene-flagship.eu/project/spearhead/Pages/GRAPHIL.aspx (Accessed on 04 October, 2020)

Lenntech. (n.d.). Water Treatment. [Online] Lenntech: https://www.lenntech.com/processes/disinfection/chemical/disinfectants-chlorine.htm (Accessed on 04 October, 2020)

Schroth, S. T., Lanfair, J. K., & Ambulkar, A. (n.d.). Water Purification. [Online] Britannica: https://www.britannica.com/topic/water-purification/Other-purification-steps (Accessed on 04 October, 2020)

Shull, A. (2012). The Design and Creation of a Portable Water Purification System. [Online] Andrews University: https://digitalcommons.andrews.edu/honors/39 (Accessed on 04 October, 2020)

Smart Water Magazine. (2019). How to purify water with graphene? [Online] Smart Water Magazine: https://smartwatermagazine.com/news/national-university-science-and-technology-nust-misis/how-purify-water-graphene (Accessed on 04 October, 2020)

Smith, B. (2020). Graph Air: Revolutionary Water Filtration Using Graphene. [Online] AZoM: https://www.azom.com/article.aspx?ArticleID=19275 (Accessed on 04 October, 2020)

“The biggest conspiracies happen in open sight” – Edward Snowden

Segment taken from this show

The Development, Concepts and Doctrine Centre (DCDC) has worked in partnership with the German Bundeswehr Office for Defence Planning to understand the future implications of human augmentation (HA), setting the foundation for more detailed Defence research and development.

The project incorporates research from German, Swedish, Finnish and UK Defence specialists to understand how emerging technologies such as genetic engineering, bioinformatics and the possibility of brain-computer interfaces could affect the future of society, security and Defence. The ethical, moral and legal challenges are complex and must be thoroughly considered, but HA could signal the coming of a new era of strategic advantage with possible implications across the force development spectrum.

HA technologies provides a broad sense of opportunities for today and in the future. There are mature technologies that could be integrated today with manageable policy considerations, such as personalised nutrition, wearables and exoskeletons. There are other technologies in the future with promises of bigger potential such as genetic engineering and brain-computer interfaces. The ethical, moral and legal implications of HA are hard to foresee but early and regular engagement with these issues lie at the heart of success.

HA will become increasingly relevant in the future because it is the binding agent between the unique skills of humans and machines. The winners of future wars will not be those with the most advanced technology, but those who can most effectively integrate the unique skills of both human and machine.

The growing significance of human-machine teaming is already widely acknowledged but this has so far been discussed from a technology-centric perspective. This HA project represents the missing part of the puzzle.

Disclaimer

The content of this publication does not represent the official policy or strategy of the UK government or that of the UK’s Ministry of Defense (MOD).

Furthermore, the analysis and findings do not represent the official policy or strategy of the countries contributing to the project.

It does, however, represent the view of the Development, Concepts and Doctrine Centre (DCDC), a department within the UK MOD, and Bundeswehr Office for Defence Planning (BODP), a department within the German Federal Ministry of Defence. It is based on combining current knowledge and wisdom from subject matter experts with assessments of potential progress in technologies 30 years out supporting deliberations and deductions for future humans and society. Published 13 May 2021 – UK DEFENSE WEBSITE

That disclaimer is a load of bollocks that means nothing, really, but covers the Ministry from some legal liabilities, just in case. You can totally ignore it. – Silview.media

GERMAN DEFENSE WEBSITE

People commented on that artist rendition: “They replaced the hand of God with a robotic one”. I answered: “No, they replaced your hand. Read up!”

Meanwhile, in Canada:

SOURCE

The US Department of Defense has something similar going on, but it doesn’t target the general population in presentations. However, if you input “DARPA” in our search utility, you find out DoD has been going same direction for decades.

DOWNLOAD PDF

If you’ve been around for a while, this should come as no surprise. The numbers in the headline below are now outdated, but not the info

SOURCE

At least US has the decency to pretend these are for military use only, I know they all are meant to be used on the general population, but I don’t know any other open admission of civillian use before.

DEMOCRACY? WE’RE OFFICIALLY 15 MONTHS INTO THE 4TH INDUSTRIAL REVOLUTION AND YOUR GOVERNMENT TOLD YOU NOTHING

This…

… perfectly overlaps on this:

Does this guy shock you that much now, or does he fall in line like the perfect Tetris piece that he is, “another brick in the wall”?

Now remember mRNA therapies are “information therapies” and these injections are the perfect tools for achieving the above goals.

Anyone remember the plebs ever being consulted on their future evolution, or are they just SUBJECTED to it, like slaves to selective breeding?!

You read this because some of my readers are generous enough to help us survive, and at least as hungry for truth as we are, basically the best readers I could hope for. Such as Corinne, who we should thank for pulling my sleeve about this one! If you’re on Gab (which you should), follow her, she has tons of great info to share every day!

DEVELOPING STORY, TO BE CONTINUED, SO BE BACK HERE SOON

ALSO READ: BOMBSHELL! 5G NETWORK TO WIRELESSLY POWER DEVICES. GUESS WHAT IT CAN DO TO NANOTECH (DARPA-FINANCED)

OBAMA, DARPA, GSK AND ROCKEFELLER’S $4.5B B.R.A.I.N. INITIATIVE – BETTER SIT WHEN YOU READ

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

Who doesn’t love a good coincidence theory?!

JBS @ WEF

BETWEEN HYSTERICALS ABOUT RUSSIAN HACKERS, WEF MEMBERS GATHER UNDER RUSSIAN HELMS TO WORK ON THE CYBER GREAT RESET

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

ORDER

“The greatest conspiracies are in plain sight” – Edward Snowden

I’ve just unearthed a series of videos that show an unpublicized side of the World Economic Forum and its leader Klaus Schwab.

These videos are extra bonuses to a 2019 German Documentary titled “Das Forum” (The Forum), which seems part of Klaus Schwab’s idea of imprinting his personal image in history for the 50th WEF anniversary.

In 2018, Schwab decided to allow a carefully selected outsider in his kitchen, in a mutually complicit attempt at positive publicity and fame. There are precedents in history. What followed was quite a disaster, in my personal opinion, because Klaus doesn’t have the subtlety needed to do this and it all derailed in a blatant bad-taste cult of personality. All under the disguise of investigative journalism, of course.

I have previously published some of these extras, but now I have the full package and we’re going to weed out the propaganda looking for real truth gems.

From this first video we find out about the so called “Young Global Leaders”, which are pretty clearly World Economic Forum’s youth elite organization. I don’t have yet a quality translation of the part in German, but the English dialogue in the beginning is quite telling.

The second video reveals shocking former Young Global Learders names, and possible new candidates (as of 2018)

In the video above, Putin confirms Blair is one of his “good friends”. Recorded 10 years ago, when they were fresh YGL alumni.

In this third “resurrected” video, we watch them openly discussing regime change in countries unaligned with WEF’s “democratic liberalism” and the Fourth Industrial Revolution

Welcome to the younger Forum!

No one’s younger than the king and his heirs, right?

Young Global Leaders

The Young Global Leaders, or Forum of Young Global Leaders, is an independent non-profit organization managed from GenevaSwitzerland, under the supervision of the Swiss government.

History

Launched by Klaus Schwab of the World Economic Forum in 2004, the Young Global Leaders are governed by a board of twelve world and industry leaders, ranging from Queen Rania of Jordan to Marissa Mayer of Yahoo! and Wikipedia co-founder Jimmy Wales. Schwab created the group with $1 million won from the Dan David Prize, and the inaugural 2005 class comprised 237 young leaders. Young Global Leaders participate in the Annual Meeting of the New Champions, established in 2007 and known informally as “Summer Davos“, alongside Global Growth Companies and other delegations to the World Economic Forum.

Papa Schwab welcomes his “Young Global Leaders” at their Inaugural Summit in 2005

Reception

BusinessWeeks Bruce Nussbaum describes the Young Global Leaders as “the most exclusive private social network in the world”, while the organization itself describes the selected leaders as representing “the voice for the future and the hopes of the next generation”.

Selection process

Representing over 70 different nations, Young Global Leaders are nominated by alumni to serve six-year terms and are subject to veto during the selection process. Candidates must be younger than 38 years old at the time of acceptance (meaning active YGLs are 44 and younger), and highly accomplished in their fields. Over the years, there have been hundreds of honorees, including several popular celebrities, alongside recognized high achievers and innovators in politics, business, academia, media, and the arts.

Members and alumni

Notable members and alumni of Young Global Leaders include:

Young Global Leader David Rothschild, fresh off the YGL boat, preaching the WEF gospel on TV

More American horsemen of the Great Reset

Let’s look at more celebrity YGL’s

Interestingly enough, Daniel Crenshaw has been deleted from their website. But not from the Internet Archive 😉

Crenshaw is also confirmed by this CNBC report

Dude doesn’t even look alive

Young Global Leaders–Anderson Cooper and Leonardo DiCaprio Are In The Most Exclusive Private Social Network In The World.

By Bloomberg, March 18, 2008, 4:00 AM GMT

The World Economic Forum out of Davos just announced its new 2008 list of YGLs—Young Global Leaders. In a growing universe of private social networks, the YGL network has got to be one of—if not THE—most exclusive sn around. A few weeks ago, I predicted that Cameron Sinclair, who founded Architecture for Humanity  would become a YGL—and he did.

YGL website profile

YGLers can find out who fellow members of the social network are in any particular city around the world by clicking on the map site (can’t do it here, sorry). Works for regions too. Want to chat with a fellow YGLer if you’re visiting Silicon Valley, call up Marc Benioff, Shai Agassi, Sergey Brin (Google founder), Gavin Newson (San Fran mayor), Jerry Yang or John Battelle. If you’re in New York City, Business News TV star Maria Bartiromo is a YGLer.

CLICK HERE TO WATCH THE FULL INTERVIEW: Google founder and Young Global Leader Sergey Brin and Klaus Schwab discuss a world without elections, redefining humanity and government

Fellowship Supporters

  • Aliko Dangote Foundation

Executive Education Partners and Supporters

  • Bill and Penny George
  • David Rubenstein
  • Harvard Kennedy School
  • Howard Cox
  • Nanyang Technological University, Singapore
  • Marilyn Carlson Nelson and Glen Nelson
  • Princeton University Andlinger Center for Energy and the Environment
  • Singapore Economic Development Board
  • University of Oxford Saïd Business School
  • University of Cape Town Graduate School of Business
  • Willis Towers Watson

Endowment Supporters (gifts from YGL members of 50,000+ CHF)

The YGL Endowment Fund was created by the community’s members to support the long-term ambitions of the Forum of Young Global Leaders. Its proceeds are intended to support the community programming and to ensure participation is accessible to all members.

  • Andrew Cohen
  • Ellana Lee
  • Georges Kern
  • Henrik Naujoks
  • Jill Otto
  • Katherine Garrett-Cox
  • M Arsjad Rasjid Mangkuningrat
  • Peter Lacy
  • Richard Stromback
  • Ron Cao
  • Sandro Salsano
  • Thor Björgolfsson
  • Veronica Colondam
  • Yana Peel
  • Zhang Yi-Chen

About us

Our growing membership of more than 1,400 members and alumni of 120 nationalities includes civic and business innovators, entrepreneurs, technology pioneers, educators, activists, artists, journalists, and more.

Aligned with the World Economic Forum’s mission, we seek to drive public-private co-operation in the global public interest. We are united by the belief that today’s pressing problems present an opportunity to build a better future across sectors and boundaries.

History

Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, created the Forum of Young Global Leaders in 2004 to help the world meet increasingly complex and interdependent problems. His vision was to create a proactive multistakeholder community of the world’s next-generation leaders to inform and influence decision-making and mobilize transformation.

Through the Forum of Young Global Leaders, Klaus Schwab envisioned facilitating earnest dialogue and friendships across cultures to bridge divides, fostering fresh thinking and dynamic new ways of collaboration to shape a more positive, peaceful and prosperous society.

Annual Reports

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

ORDER

In November 2020, I anticipated Biden’s takeover of the White House against the vote, based solely on the fact that he is one of the most appreciated troopers at Davos, as opposed to Trump. And that’s where, for over two decades, they’ve developed and coordinated a long term plan for the corporate take-over of elected governance across the entire world. That plan is too big to fail, especially due to some soft opposition from another corporate stooge such as Trump.
The Great Reset is not some looney vision of the future from some eccentric billionaire, as Tucker Calson or SkyNews may present it. It’s an old and lengthy process that’s about to be concluded this decade.

My challenge for the US electors in November 2020

In this report we reveal, in the simplest most accessible terms. how this scheme achieves the intermediary goal of transferring assets and wealth from ignorant plebs to corporate overlords.

This report is in video format and YouTube took it down.
Please CLICK HERE TO WATCH ON ODYSEE

additional info and resources

NB: Why did I say earlier “intermediary goal”? What’s the endgame behind that? Why do these people want more, when they have more than they can enjoy in many generations to come?
All these questions might have a simple answer:
It’s not about wealth anymore. Money is for poor people nowadays. Assets are for rich people. But for the decision-making money-printing overlords, it’s about self-preservation at this point. They went too far and they know they’re over if the population gets out of their control.
Material de-possession is part of a strategy of disempowering their main potential threat at this point – you, I, us. We could all have everything right now. But then many of us could gain the power to figure out what they’ve been up to lately and we could even have the power to do something about it. And that would be the end of them.
So they’re resetting us back into the Dark Ages, but with Star Trek technology.
“Techno-feudalism”, as I called it last year, and Varoufakis used exactly the same words in an interview, to my satisfaction.

This has been taken down since, but they forgot the pdf, got it RIGHT HERE
After nationalization, another Reset comes and they start privatizing for pennies. And, over the period of many years, goods eventually end up in the same few hands. We’ve already witnessed that in my home-country Romania and the rest of the former East-European communist block. And now, in the meantime, the future owners get to be PPP partners and manage it anyway.
SOURCE
This got deleted after a backlash, but too late

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

Sometimes my memes are 3D. And you can own them. Or send them to someone.
You can even eat some of them.
CLICK HERE

If you’re familiar with our reports, George Church is no stranger to you either. He’s a founder figure for the Human Genome Project, CRISPR and The BRAIN Initiative. But he’s totally not getting the deserved attention, seeing that he’s just turned our world upside down. Not by himself, of course.

Remember when Fauci and Big Tech joined efforts to keep us in the dark in regards to the mRNA impact on our genetics and DNA?


We’ve shown that there’s an entire new field of science that does just that: argues what Fauci said using RNA to reprogram DNA.
But we’ve just reached a deeper level of the rabbit hole that we didn’t even know it’s there already. It’s been there for a while. As in 2020 minus “three years of stealth operations”. If you read carefully below, it will all make much more sense.

George M. Church biography as per Harvard website

Professor at Harvard & MIT, co-author of 580 papers, 143 patent publications & the book “Regenesis”; developed methods used for the first genome sequence (1994) & million-fold cost reductions since (via fluor-NGS & nanopores), plus barcoding, DNA assembly from chips, genome editing, writing & recoding; co-initiated BRAIN Initiative (2011) & Genome Projects (GP-Read-1984, GP-Write-2016, PGP-2005:world’s open-access personal precision medicine datasets); machine learning for protein engineering, tissue reprogramming, organoids, xeno-transplantation, in situ 3D DNA, RNA, protein imaging.

SEE MORE

George Church is Professor of Genetics at Harvard Medical School and Director of  PersonalGenomes.org, which provides the world’s only open-access information on human Genomic, Environmental & Trait data (GET). His 1984 Harvard PhD included the first methods for direct genome sequencing, molecular multiplexing & barcoding. These led to the first genome sequence (pathogen, Helicobacter pylori) in  1994 . His innovations have contributed to nearly all “next generation” DNA sequencing methods and companies (CGI-BGI, Life, Illumina, Nanopore). This plus his lab’s work on chip-DNA-synthesis, gene editing and stem cell engineering resulted in founding additional application-based companies spanning fields of medical diagnostics ( Knome/PierianDxAlacrisAbVitro/JunoGenosVeritas Genetics ) & synthetic biology / therapeutics ( JouleGen9EditasEgenesisenEvolvWarpDrive ). He has also pioneered new privacybiosafetyELSIenvironmental & biosecurity policies. He is director of an IARPA BRAIN Project and NIH Center for Excellence in Genomic Science. His honors include election to NAS & NAE & Franklin Bower Laureate for Achievement in Science. He has coauthored 537 papers156 patent publications & one book (Regenesis).

THIS IS BGI
THIS IS ILLUMINA

PhD students from (* = main training programs for our group):
Harvard University: Biophysics* , BBS* , MCB , ChemBio* , SystemsBio* , Virology
MIT: HST*ChemistryEE/CSPhysicsMath.
Boston Universty: BioinformaticsBiomedical Engineering
Cambridge University, UK: Genetics

PublicationsCVs-resumesLab members , Co-author netELSI
Technology transfer & Commercial Scientific Advisory Roles
Personal info — News — Awards — Grant proposals
Director of Research Centers: DOE-Biotechnologies (1987), NIH-CEGS (2004), PGP (2005), Lipper Center for Computational Genetics (1998), Wyss Inst. Synthetic Biology (2009). Other centers: Regenesis Inst. (2017), SIAT Genome Engineering (2019), Space Genetics (2016), WICGR, Broad Inst. (1990), MIT Media Lab (2014)

Updated: 15-Jan-02021

The BRAIN initiative[edit]

He was part of a team of six[80] who, in a 2012 scientific commentary, proposed a Brain Activity Map, later named BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies).[81] They outlined specific experimental techniques that might be used to achieve what they termed a “functional connectome“, as well as new technologies that will have to be developed in the course of the project,[80] including wireless, minimally invasive methods to detect and manipulate neuronal activity, either utilizing microelectronics or synthetic biology. In one such proposed method, enzymatically produced DNA would serve as a “ticker tape record” of neuronal activity.Wikipedia

SEE THE NAZI ORIGINS OF WYSS HERE

Wyss Institute Will Lead IARPA-Funded Brain Mapping Consortium

January 26, 2016

(BOSTON) — The Wyss Institute for Biologically Inspired Engineering at Harvard University today announced a cross-institutional consortium to map the brain’s neural circuits with unprecedented fidelity. The consortium is made possible by a $21 million contract from the Intelligence Advanced Research Projects Activity (IARPA) and aims to discover the brain’s learning rules and synaptic ‘circuit design’, further helping to advance neurally-derived machine learning algorithms.

The consortium will leverage the Wyss Institute’s FISSEQ (fluorescent in-situ sequencing) method to push forward neuronal connectomics, the science of identifying the neuronal cells that work together to bring about specific brain functions. FISSEQ was developed in 2014 by the Wyss Core Faculty member George Church and colleagues and, unlike traditional sequencing technologies, it provides a method to pinpoint the precise locations of specific RNA molecules in intact tissue. The consortium will harness this FISSEQ capability to accurately trace the complete set of neuronal cells and their connecting processes in intact brain tissue over long distances, which is currently difficult to do with other methods.

Awarded a competitive IARPA MICrONS contract, the consortium will further the overall goals of President Obama’s BRAIN initiative, which aims to improve the understanding of the human mind and uncover new ways to treat neuropathological disorders like Alzheimer’s disease, schizophrenia, autism and epilepsy. The consortium’s work will fundamentally innovate the technological framework used to decipher the principal circuits neurons use to communicate and fulfill specific brain functions. The learnings can be applied to enhance artificial intelligence in different areas of machine learning such as fraud detection, pattern and image recognition, and self-driving car decision making.

See how the Wyss-developed FISSEQ technology is able to capture the location of individual RNA molecules within cells, which will allow the reconstruction of neuronal networks in the 3-dimensional space of intact brain tissue. Credit: Wyss Institute at Harvard University

“Historically, the mapping of neuronal paths and circuits in the brain has required brain tissue to be sectioned and visualized by electron microscopy. Complete neurons and circuits are then reconstructed by aligning the individual electron microsope images, this process is costly and inaccurate due to use of only one color (grey),” said Church, who is the Principal Investigator for the IARPA MICrONs consortium. “We are taking an entirely new approach to neuronal connectomics_immensely colorful barcodes_that should overcome this obstacle; and by integrating molecular and physiological information we are looking to render a high-definition map of neuronal circuits dedicated first to specific sensations, and in the future to behaviors and cognitive tasks.”

Church is Professor of Genetics at Harvard Medical School, and Professor of Health Sciences and Technology at Harvard and MIT.

To map neural connections, the consortium will genetically engineer mice so that each neuron is barcoded throughout its entire structure with a unique RNA sequence, a technique called BOINC (Barcoding of Individual Neuronal Connections) developed by Anthony Zador at Cold Spring Harbor Laboratory. Thus a complete map representing the precise location, shape and connections of all neurons can be generated.

The key to visualizing this complex map will be FISSEQ, which is able to sequence the total complement of barcodes and pinpoint their exact locations using a super-resolution microscope. Importantly, since FISSEQ analysis can be applied to intact brain tissue, the error-prone brain-sectioning procedure that is part of common mapping studies can be avoided and long neuronal processes can be more accurately traced in larger numbers and at a faster pace.

In addition, the scientists will provide the barcoded mice with a sensory stimulus, such as a flash of light, to highlight and glean the circuits corresponding to that stimulus within the much more complex neuronal map. An improved understanding of how neuronal circuits are composed and how they function over longer distances will ultimately allow the team to build new models for machine learning.

The multi-disciplinary consortium spans 6 institutions. In addition to Church, the Wyss Institute’s effort will be led by Samuel Inverso, Ph.D., who is a Staff Software Engineer and Co-investigator of the project. Complementing the Wyss team, are co-Principal Investigators Anthony Zador, Ph.D., Alexei Koulakov, Ph.D., and Jay Lee, Ph.D., at Cold Spring Harbor Laboratory. Adam Marblestone, Ph.D., and Liam Paninski, Ph.D. are co-Investigator at MIT and co-Principal Investigator at Columbia University, respectively. The Harvard-led consortium is partnering with another MICrONS team led by Tai Sing Lee, Ph.D. of Carnegie Mellon University as Principal investigator under a separate multi-million contract, with Sandra Kuhlman, Ph.D. of Carnegie Mellon University and Alan Yuille, Ph.D. of Johns Hopkins University as co-Principal investigators, to develop computational models of the neural circuits and a new generation of machine learning algorithms by studying the behaviors of a large population of neurons in behaving animals, as well as the circuitry of the these neurons revealed by the innovative methods developed by the consortium.

“It is very exciting to see how technology developed at the Wyss Institute is now becoming instrumental in showing how specific brain functions are wired into the neuronal architecture. The methodology implemented by this research can change the trajectory of brain mapping world wide,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. – WYSS Institute

IARPA is CIA’s DARPA.
DARPA IS RAN BY PENTAGON AND IARPA BY CIA.
IARPA IS EVEN MORE SECRETIVE, DARING AND SOCIOPATHIC.

Machine Intelligence from Cortical Networks (MICrONS)

Intelligence Advanced Research Projects Activity (IARPA)

Brain Research through Advancing Innovative Neurotechnologies. (BRAIN)

Background
The science behind Obama’s BRAIN project. (BrainFacts, 15Apr-2013 | Jean-François Gariépy)
Wyss Institute Will Lead IARPA-Funded Brain Mapping Consortium (Wyss, 26-Jan-2016 |)
Project Aims to Reverse-engineer Brain Algorithms, Make Computers Learn Like Humans (Scientific Computing, 4-Feb-2016 | Byron Spice)
The U.S. Government Launches a $100-Million “Apollo Project of the Brain” (Scientific American, 8-Mar-2016 | Jordana Cepelewicz)

Grant Proposal
Tasks 2 & 3 PDF Harvard, Wyss, CSHL, MIT.
Task 1. CMU.


Molecular TickertapeRelated Projects:

Full Rosetta brains in situ
A. Activity (MICrONS = Ca imaging) (Alternative=Tickertape, see figure to right)
B. Behavior (MICrONS & Alt = traditional video)
C. Connectome (MICrONS & Alt = BOINC via Cas9-barcode)
D. Developmental Lineage (via Cas9-barcode)
E. Expression (RNA & Protein via FISSEQ)

Building brain components, circuits and organoids.
Busskamp V, Lewis NE, Guye P, Ng AHM, Shipman S, Byrne SS, Sanjana NE, Li Y, Weiss R, Church GM (2014)
Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology MSB 10:760:1-21

SOURCE

Flagship Pioneering’s Scientists Invent a New Category of Genome Engineering Technology: Gene Writing

Tessera Therapeutics emerges from three years of stealth operations to pioneer Gene Writing™ as a new genome engineering technology and category of genetic medicine

(PRNewsfoto/Flagship Pioneering)

NEWS PROVIDED BY Flagship Pioneering 

Jul 07, 2020, 08:00 ET


CAMBRIDGE, Mass., July 7, 2020 /PRNewswire/ — Flagship Pioneering today announced the unveiling of Tessera Therapeutics, Inc. a new company with the mission of curing disease by writing in the code of life. Tessera is pioneering Gene Writing™, a new biotechnology that writes therapeutic messages into the genome to treat diseases at their source.

Tessera’s Gene Writing platform is a potentially revolutionary breakthrough for genetic medicine that addresses key limitations of gene therapy and gene editing. Gene Writing technology can alter the genome by efficiently inserting genes and exons (parts of genes), introducing small insertions and deletions, or changing single or multiple DNA base pairs. The technology could enable cures for diseases that arise from errors in the genome, including monogenic disorders. It could also allow precise gene regulation in other diseases such as neurodegenerative diseases, autoimmune disorders, and metabolic diseases.

“While profound advancements in genetic medicine over the last two decades had therapeutic promise for many previously untreatable diseases, the intrinsic properties of existing gene therapy and editing have significant shortcomings that limit their benefits to patients,” says Noubar Afeyan, Ph.D., founder and CEO of Flagship Pioneering and Chairman of Tessera Therapeutics. “Our scientists have invented a new technology, called Gene Writing, that has the ability to write therapeutic messages into the genomes of somatic cells. We created Tessera to pioneer its applications for medicine. However, the breakthrough is broad and could be applied to many different genomes from humans to plants to microorganisms.”

A New Era of Genetic Medicine

Geoffrey von Maltzahn, Ph.D., an MIT-trained biological engineer; Jacob Rubens, Ph.D., an MIT-trained synthetic biologist; and other scientists at Flagship Labs, the enterprise’s innovation foundry, co-founded Tessera in 2018 to create a platform that could design, make, and launch Gene Writing medicines. A General Partner at Flagship Pioneering, von Maltzahn has co-founded numerous biotechnology companies, including Sana Biotechnology, Indigo Agriculture, Kaleido Biosciences, Seres Therapeutics, and Axcella Health.

“DNA codes for life. But sometimes our DNA is written improperly, driving an enormous variety of diseases,” says von Maltzahn, Tessera’s Chief Executive Officer. “We started Tessera Therapeutics with a simple question: ‘What if Nature evolved a better solution than CRISPR for inserting curative therapeutic messages into the genome?’ It turns out that engineered and synthetic mobile genetic elements offer the potential to go beyond the limitations of gene editing technologies and allow Gene Writing. Our outstanding team of scientists is focused on bringing the vast promise of this new technology category to patients.”

Mobile genetic elements, the inspiration for Gene Writing, are evolution’s greatest genomic architect. The first mobile genetic element was discovered by Barbara McClintock, who won the 1983 Nobel Prize for revealing the mobile nature of genes. Mobile genetic elements code for the machinery to move or copy themselves into a new location in the genome, and they have been selected over billions of years to autonomously and efficiently “write” their DNA into new genomic sites. Today, mobile genetic elements are among the most abundant and ubiquitous genes in nature.

Over the past two years, Tessera has been mining genomes to discover novel mobile genetic elements and engineering them to create Gene Writing technology.

Tessera’s Gene Writers write therapeutic messages into the genome using RNA or DNA templates. RNA-based Gene Writing uses an RNA template and Gene Writer protein to either write a new gene into the genome or guide the rewriting of a pre-existing genomic sequence to make a small substitution, insertion, or deletion. DNA-based Gene Writing uses a DNA template to write a new gene into the genome.

By harnessing the biology of mobile genetic elements, Gene Writing holds the potential to overcome the limitations of current genetic medicine approaches by:

  • Efficiently writing small and large alterations to the genome of somatic cells with minimal reliance upon host DNA repair pathways, unlike nuclease-based gene editing technologies.
  • Permanently adding new DNA to dividing cells, unlike AAV-based gene therapy technologies.
  • Writing new DNA sequences into the genome by delivering only RNA.
  • Allowing repeated administration of treatments to patients in order to dose genetic medicines to effect, which is not possible with current gene therapies.

Tessera has licensed Flagship Pioneering’s intellectual property estate, which was begun in 2018 with seminal patent filings supporting both RNA and DNA Gene Writing technologies.

Tessera’s Scientific Advisory Board includes Luigi Naldini, David Schaffer, Andrew Scharenberg, Nancy Craig, George Church, Jonathan Weissman, and John Moran, who collectively have decades of experience in developing gene therapies and gene editing technologies, and also have commercial expertise from 4D, UniQure, Casebia, Cellectis, Magenta, and Editas. Tessera’s Board of Directors includes John Mendlein, Flagship Executive Partner and former CEO of multiple companies; Melissa Moore, Chair of Tessera’s Scientific Advisory Board, Chief Scientific Officer of Moderna, member of the National Academy of Sciences, and founding co-director of the RNA Therapeutics Institute; Geoffrey von Maltzahn; and Noubar Afeyan. The 30-person R&D team at Tessera has deep genetic medicine and startup expertise, including alumni from Editas, Intellia, Beam, Casebia, and Moderna.

About Tessera Therapeutics
Tessera Therapeutics is an early-stage life sciences company pioneering Gene Writing™, a new biotechnology designed to offer scientists and doctors the ability to write and rewrite small and large therapeutic messages into the genome, thereby curing diseases at their source. Gene Writing holds the potential to become a new category in genetic medicine, building upon recent breakthroughs in gene therapy and gene editing, while eliminating important limitations in their reach, utilization and efficacy. Tessera Therapeutics was founded by Flagship Pioneering, a life sciences innovation enterprise that conceives, resources, and develops first-in-class category companies to transform human health and sustainability.

About Flagship Pioneering
Flagship Pioneering conceives, creates, resources, and develops first-in-category life sciences companies to transform human health and sustainability. Since its launch in 2000, the firm has applied a unique hypothesis-driven innovation process to originate and foster more than 100 scientific ventures, resulting in over $34 billion in aggregate value. To date, Flagship is backed by more than $4.4 billion of aggregate capital commitments, of which over $1.9 billion has been deployed toward the founding and growth of its pioneering companies alongside more than $10 billion of follow-on investments from other institutions. The current Flagship ecosystem comprises 41 transformative companies, including Axcella Health (NASDAQ: AXLA), Denali Therapeutics (NASDAQ: DNLI), Evelo Biosciences (NASDAQ: EVLO), Foghorn Therapeutics, Indigo Ag, Kaleido Biosciences (NASDAQ: KLDO), Moderna (NASDAQ: MRNA), Rubius Therapeutics (NASDAQ: RUBY), Sana Biotechnology, Seres Therapeutics (NASDAQ: MCRB), and Syros Pharmaceuticals (NASDAQ: SYRS). – Flagship Pioneering

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

You can always build better anything, but you can only build back better something that’s not there anymore. You can build back an order only out of chaos. As in “ordo ab chao”.

Version 2, updated July 2021

the symbolic significance of the motto ‘Ordo ab Chao’

Within Freemasonry, few themes are more essential to understanding the fraternity than light and darkness. Joining Freemasonry is seen as the process of being welcomed into the light and an act from which one can deliver themselves from darkness and become spiritually and morally awakened.

Within the same framework, one can see their joining of Freemasonry as their delivery from chaos and an opportunity to build a better life based on the critical Masonic values and life lessons.

As has been explored, order and chaos are not static entities but are complexly intertwined and evolve over time. For a Mason, the intersectionality of order and chaos is imperative to understand if one is to grow and become a better person.

From such consideration, it is clear to see why the Masonic motto ‘Ordo ab Chao’ has such significance and is widely emblazoned across Masonic regalia, flags, and symbols the world over.
Source: https://freemasonscommunity.life

And your private study exercise for today:
See if you can find any differences between Freemasonry and the World Economic Forum, besides publicity.

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
We hardly made it before, but this summer something’s going on, our audience stats show bizarre patterns, we’re severely under estimates and the last savings are gone. We’re not your responsibility, but if you find enough benefits in this work…
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them