Remember past spring when magnetic ferritin in Covid bioweapons was a conspiracy theory and we were getting our YouTube channels and socials wiped out for exposing it? That was fun*!
(* not)

THE VERY SHORT COURSE, LET’S SEE HOW LONG DOES THIS SURVIVE ON YOUTUBE THIS TIME

The spike ferritin nanoparticle (SpFN) vaccine was designed as a ferritin-fusion recombinant protein for expression as a nanoparticle, and has been described in detail previously (20). Briefly, the spike protein sequence was derived from the Wuhan-Hu-1 genome sequence (GenBank accession number: MN908947.3)

Science Translational Medicine

Ferritin sounds familiar? No doubt.

ROCKEFELLERS ONCE SAID: READY YOUR TINFOIL HATS FOR MIND CONTROL. AND THEY SHOWED US A DOOR TO THE MAGNETIC JABS

US Patent for Ferritin nanoparticle compositions and methods to modulate cell activity Patent (Patent # 10,786,570)

Ferritin nanoparticle compositions and methods to modulate cell activity

Jul 30, 2018 – The Rockefeller University

The present invention provides methods and compositions for the remote control of cell function based on the use of radiofrequency waves to excite nanoparticles targeted to specific cell types. The nanoparticles may be applied to the target cell extracellularly and/or expressed intracellularly. The cell type of interest expresses a temperature sensitive channel wherein excitation of the nanoparticles results in a localized temperature increase that is transduced into a cellular response. Such cellular responses may include, for example, increases in gene expression resulting in production of one or more physiologically active proteins. The expression of such proteins can be used to treat a variety of different inherited or acquired diseases or disorders in a subject. Accordingly, the invention provides a generic approach for treatment of any disease associated with a protein deficiency. – SOURCE

And, coincidentally, of course:

 In patients with severe COVID-19 disease, decreased hemoglobin along with elevated erythrocyte sedimentation rate (ESR), C-reactive protein, lactate dehydrogenase, albumin [62], serum ferritin [63], and low oxygen saturation [64] provide additional support for this hypothesis.

SOURCE (surprise!)

Spikes and nanoparticles

From Stanford Medicine

“The spike protein from SARS-CoV-2 is quite large, so scientists often formulate abridged versions that are simpler to make and easier to use. After closely examining the spike, Kim and his team chose to remove a section near the bottom.

To complete their vaccine, they combined this shortened spike with nanoparticles of ferritin – an iron-containing protein – which has been previously tested in humans. Before the pandemic, Powell had been working with these nanoparticles to develop an Ebola vaccine. Together with scientists at the SLAC National Accelerator Laboratory, the researchers used cryo-electron microscopy to get a 3D image of the spike ferritin nanoparticles in order to confirm that they had the proper structure.

For the mouse tests, the researchers compared their shortened spike nanoparticles to four other potentially useful variations: nanoparticles with full spikes, full spikes or partial spikes without nanoparticles, and a vaccine containing just the section of the spike that binds to cells during infection. Testing the effectiveness of these vaccines against actual SARS-CoV-2 virus would have required the work to be done in a Biosafety Level 3 lab, so the researchers instead used a safer pseudo-coronavirus that was modified to carry SARS-CoV-2’s spikes.”

What a “GenBank accession number” looks like: characters on a server.

So they took a code from a server, like all the other vaccine makers (see link above), they took a nanoparticle that was ‘illegal’ to discuss on TheirTubes and they did what?

US Army Creates Single Vaccine Against All COVID & SARS Variants, Researchers Say

Within weeks, Walter Reed researchers expect to announce that human trials show success against Omicron—and even future strains.

BY TARA COPP, SENIOR PENTAGON REPORTER, DEFENSE ONE
DECEMBER 21, 2021, Updated on Dec. 22 

Within weeks, scientists at the Walter Reed Army Institute of Research expect to announce that they have developed a vaccine that is effective against COVID-19 and all its variants, even Omicron, as well as previous SARS-origin viruses that have killed millions of people worldwide. 

The achievement is the result of almost two years of work on the virus. The Army lab received its first DNA sequencing of the COVID-19 virus in early 2020. Very early on, Walter Reed’s infectious diseases branch decided to focus on making a vaccine that would work against not just the existing strain but all of its potential variants as well.

Walter Reed’s Spike Ferritin Nanoparticle COVID-19 vaccine, or SpFN, completed animal trials earlier this year with positive results. Phase 1 of human trials, wrapped up this month, again with positive results that are undergoing final review, Dr. Kayvon Modjarrad, director of Walter Reed’s infectious diseases branch, said in an exclusive interview with Defense One on Tuesday. The new vaccine will still need to undergo phase 2 and phase 3 trials.

A schematic visualization of the ferritin nanoparticle with shortened coronavirus spike proteins, which is the basis of a SARS-CoV-2 vaccine candidate from Stanford. (SOURCE)

“We’re testing our vaccine against all the different variants, including Omicron,” Modjarrad said. 

On Wednesday, Walter Reed officials said in a statement that its vaccine “was not tested on the Omicron variant,“ but later clarified in an email to Defense One that while the recently discovered variant was not part of the animal studies, it is being tested in the lab against clinical human trial samples. These “neutralization assays” test whether antibodies can inhibit the growth of a virus. 

“We want to wait for those clinical data to be able to kind of make the full public announcements, but so far everything has been moving along exactly as we had hoped,” Modjarrad said. 

Unlike existing vaccines, Walter Reed’s SpFN uses a soccer ball-shaped protein with 24 faces for its vaccine, which allows scientists to attach the spikes of multiple coronavirus strains on different faces of the protein.

“It’s very exciting to get to this point for our entire team and I think for the entire Army as well,” Modjarrad said. 

That moment when US Army announces ferritin-based vaccines in December, and my reports about it were getting deleted by LibtardTech last summer:

Produced May 2021

These ferritin nanoparticles are rapidly drained to lymph nodes and target dendritic cells, especially CD8α+ population, upon subcutaneous immunization. 

SOURCE

Series of preclinical studies supports the Army’s pan-coronavirus vaccine development strategy

Source Army.mil December 16, 2021

A vial of spike ferritin nanoparticle (SpFN), WRAIR’s COVID-19 vaccine. Built on a ferritin platform, the vaccine offers a flexible approach to targeting multiple variants of the virus that causes COVID-19 and potentially other coronaviruses as well. (U.S. Army photo by Mike Walters/ RELEASED)

SILVER SPRING, Md. – A series of recently published preclinical study results show that the Spike Ferritin Nanoparticle (SpFN) COVID-19 vaccine developed by researchers at the Walter Reed Army Institute of Research (WRAIR) not only elicits a potent immune response but may also provide broad protection against SARS-CoV-2 variants of concern as well as other coronaviruses.

Scientists in WRAIR’s Emerging Infectious Diseases Branch (EIDB) developed the SpFN nanoparticle vaccine, based on a ferritin platform, as part of a forward-thinking “pan-SARS” strategy that aims to address the current pandemic and acts as a first line of defense against variants of concern and similar viruses that could emerge in the future.

“The accelerating emergence of human coronaviruses throughout the past two decades and the rise of SARS-CoV-2 variants, including most recently Omicron, underscore the continued need for next-generation preemptive vaccines that confer broad protection against coronavirus diseases,” said Dr. Kayvon Modjarrad, Director of the Emerging Infectious Diseases Branch at WRAIR, co-inventor of the vaccine and the U.S. Army lead for SpFN. “Our strategy has been to develop a ‘pan-coronavirus’ vaccine technology that could potentially offer safe, effective and durable protection against multiple coronavirus strains and species.”

Pre-clinical studies published today in Science Translational Medicine indicate that the SpFN vaccine protects non-human primates from disease caused by the original strain of SARS-CoV-2 and induces highly-potent and broadly-neutralizing antibody responses against major SARS-CoV-2 variants of concern including the SARS-CoV-1 virus that emerged in 2002.

SpFN entered Phase 1 human trials in April 2021. Early analyses, expected to conclude this month, will provide insights into whether SpFN’s potency and breadth, as demonstrated in preclinical trials, will carry over into humans. The data will also allow researchers to compare SpFN’s immune profile to that of other COVID-19 vaccines already authorized for emergency use.

“This vaccine stands out in the COVID-19 vaccine landscape,” Modjarrad said. “The repetitive and ordered display of the coronavirus spike protein on a multi-faced nanoparticle may stimulate immunity in such a way as to translate into significantly broader protection.”

WRAIR developed a secondary candidate vaccine, a SARS-CoV-2 Spike Receptor-Binding Domain Ferritin Nanoparticle (RFN) vaccine, which targets a smaller part of the coronavirus Spike protein than the SpFN vaccine. Results from a study, published recently in the Proceedings of the National Academy of Sciences, show that this vaccine potentially offers similar protection against an array of SARS-CoV-2 variants and SARS-CoV-1.

“The RFN vaccine candidate is more compact and has some natural advantages as we try to increase the immune response against multiple coronaviruses using a single vaccine platform, so it is still under consideration as part of our pan-coronavirus vaccine development pipeline,” said WRAIR structural biologist and vaccine co-inventor, Dr. Gordon Joyce.

“The threat from COVID-19 continues as it evolves, and eventually there will be other emerging disease threats,” said Dr. Nelson Michael, Director of the Center for Infectious Diseases Research at WRAIR. “Our investment in developing a next generation vaccine is an important step towards getting ahead of COVID-19 and future disease threats.”

A SARS-CoV-2 Ferritin Nanoparticle Vaccine Elicits Protective Immune Responses in Nonhuman Primates

http://www.science.org/doi/10.1126/scitranslmed.abi5735

Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques

https://www.pnas.org/content/118/38/e2106433118

SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses

https://www.nature.com/articles/s41541-021-00414-4

A SARS-CoV-2 spike ferritin nanoparticle vaccine protects against heterologous challenge with B.1.1.7 and B.1.351 virus variants in Syrian golden hamsters

https://www.nature.com/articles/s41541-021-00392-7

SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity

https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01639-9

SARS-COV-2-Spike-Ferritin-Nanoparticle (SpFN) Vaccine With ALFQ Adjuvant for Prevention of COVID-19 in Healthy Adults

Clinical Trials.gov: https://clinicaltrials.gov/ct2/show/NCT04784767

Well, guess what?

We’ve already published some of that literature past spring..
With what occasion?
Everything will become round again if you (re)visit this pivotal moment in independent journalism that will keep rocking the official narrative:

MAGNETOGENETICS, CO-FINANCED BY DARPA, GATES, ROCKEFELLERS, ZUCKERBERG! ISN’T THIS WHY VAXXERS TURN INTO FRIDGE DOORS AND MAGNETS STICK ON THEM?!

Those poor people sticking forks and cellphones on their foreheads seem to be the lab rats for this new escalation in the Fourth Industrial Revolution by the World Psychopaths Forum.

CAN YOU DO ‘MAGNETIC TRANSCRANIAL STIMULATION” WITHOUT FERRITIN OR GRAPHENE AMPING YOUR BRAIN?

And if you want an even larger context, what better evidence that Pharmafia, Big Tech and the Military are not separate entities, they’re rather arms of a common enterprise I like to call “The Military BioTech Complex”.

THE MILITARY BIOTECH COMPLEX FROM ORIGINS TO THE DARK WINTER AND COVID

If you can steal a few moments of peace and warmth with the dearest ones, take good advantage, for me too, I can’t, and these may be our last days before the war on us escalates from psychological and biochemical to kinetic. Then arm up to hold your positions and make it through the Darkest Winter!
Happy holidays!

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

Graphene is the new asbestos. Plus injectable and mandatory.
The rest Of the graphene oxide story is here, if you need more background, this post is a result of that investigation

NOTE: A needed clarification solicited by some readers:
Yes, we knew of GRAPHENE COATING on masks in May, as seen below, which is horrible enough, even more so since not many followed Canada’s example in banning it.
What this article brings new is a confirmation for GRAPHENE OXYDE, which is not very different in properties and health impact, but seems to be specific to these mRNA jabs, and so we complete the new revelations on graphene oxide and vaccines from La Quinta Columna.

OOPS!

The World’s First Anti-Coronavirus Surgical Mask by Wakamono

By Dr. Priyom Bose, Ph.D. Sep 30 2020

Image Credit: Dragana Gordic/Shutterstock.com

In December 2019, a novel coronavirus (SARS-CoV-2) was first detected in Wuhan, in China’s Hubei province. On 11 March 2020, the World Health Organization (WHO) acknowledged and characterized the condition as a pandemic owing to the rapid spread of the virus across the globe infecting millions of individuals. Scientists are fighting tirelessly to find out ways to curb the spread of the virus and eradicate it.

SARS-CoV-2 is regarded as highly contagious and spreads rapidly through person-to-person contact. When an infected person sneezes or coughs, their respiratory droplets can easily infect a healthy individual. Besides enforcing social distancing, common citizens are encouraged to wear face masks to prevent droplets from getting through the air and infecting others.

Despite the efficiency of N95, a respiratory protective device, to filter out 95% of particles (≥0.3 μm), surgical facemasks are single-use, expensive, and often ill-fitting, which significantly reduces their effectiveness. Nanoscience researchers have envisioned a new respirator facemask that would be highly efficient, recyclable, customizable, reusable, and have antimicrobial and antiviral properties.

Nanotechnology in the Production of Surgical Masks

Nanoparticles are extensively used for their novel properties in various fields of science and technology.

In the current pandemic situation, scientists have adopted this technology to produce the most efficient masks. Researchers have used a novel electrospinning technology in the production of nanofiber membranes. These nanofiber membranes are designed to have various regulating properties such as fiber diameter, porosity ratio, and many other microstructural factors that could be utilized to produce high-quality face masks. Researchers in Egypt have developed face masks using nanotechnology with the help of the following components:

Polylactic acid

This transparent polymeric material is derived from starch and carbohydrate. It has high elasticity and is biodegradable. Researchers found that electrospun polylactic acid membranes possess high prospects for the production of filters efficient in the isolation of environmental pollutants, such as atmospheric aerosol and submicron particulates dispersed in the air.

Despite its various biomedical applications (implant prostheses, catheters, tissue scaffolds, etc.), these polylactic membranes are brittle. Therefore, applying frequent pressure during their usage could produce cracks that would make them permeable to viral particles. However, this mechanical drawback can be fixed using other supportive nanoparticles that could impart mechanical strength, antimicrobial and antiviral properties, which are important in making face masks effective in the current pandemic situation.

Copper oxide nanoparticles

These nanoparticles have many biomedical applications, for example, infection control, as they can inhibit the growth of microorganisms (fungi, bacteria) and viruses. It has also been reported that SARS-CoV-2 has lower stability on the metallic copper surface than other materials, such as plastic or stainless steel. Therefore, the integration of copper oxide nanoparticles in a nanofibrous polymeric filtration system would significantly prevent microbial adherence onto the membrane.  

Graphene oxide nanoparticles

These nanoparticles possess exceptional properties, such as high toughness, superior electrical conductivity, biocompatibility, and antiviral and antibacterial activity. Such nanoparticles could be utilized in the production of masks.

Cellulose acetate

This is a semi-synthetic polymer derived from cellulose. It is used in ultrafiltration because of its biocompatibility, high selectivity, and low cost. It is also used in protective clothing, tissue engineering, and nanocomposite applications.

With the help of the aforesaid components, researchers in Egypt have designed a novel respirator filter mask against SARS-CoV-2. This mask is based on a disposable filter piece composed of the unwoven nanofibers comprising multilayers of a) copper oxide nanoparticles, graphene oxide nanoparticles, and polylactic acid, or b) copper oxide nanoparticles, graphene oxide nanoparticles, and cellulose acetate, with the help of electrospun technology and high-power ultrasonication. These facemasks are reusable, i.e., washable in water and could be sterilized using an ultraviolet lamp (λ = 250 nm).

SOURCE
WORKING TO GET CONFIRMATION FROM THESE GUYS TOO
SOURCE

Graphene-coated face masks: COVID-19 miracle or another health risk?

by C. Michael White, The Conversation

mask
Credit: Pixabay/CC0 Public Domain

As a COVID-19 and medical device researcher, I understand the importance of face masks to prevent the spread of the coronavirus. So I am intrigued that some mask manufacturers have begun adding graphene coatings to their face masks to inactivate the virus. Many viruses, fungi and bacteria are incapacitated by graphene in laboratory studies, including feline coronavirus.

Because SARS CoV-2, the coronavirus that causes COVID-19, can survive on the outer surface of a face mask for days, people who touch the mask and then rub their eyes, nose, or mouth may risk getting COVID-19. So these manufacturers seem to be reasoning that graphene coatings on their reusable and disposable face masks will add some anti-virus protection. But in March, the Quebec provincial government removed these masks from schools and daycare centers after Health Canada, Canada’s national public health agency, warned that inhaling the graphene could lead to asbestos-like lung damage.

Is this move warranted by the facts, or an over-reaction? To answer that question, it can help to know more about what graphene is, how it kills microbes, including the SARS-COV-2 virus, and what scientists know so far about the potential health impacts of breathing in graphene.

How does graphene damage viruses, bacteria and human cells?

Graphene is a thin but strong and conductive two-dimensional sheet of carbon atoms. There are three ways that it can help prevent the spread of microbes:

  • Microscopic graphene particles have sharp edges that mechanically damage viruses and cells as they pass by them.
  • Graphene is negatively charged with highly mobile electrons that electrostaticly trap and inactivate some viruses and cells.
  • Graphene causes cells to generate oxygen free radicals that can damage them and impairs their cellular metabolism.
Dr Joe Schwarcz explains why Canada banned graphene masks. Doesn’t say why other countries didn’t. When two governments have opposing views on a poison, one is criminally wrong and someone has to pay.

Why graphene may be linked to lung injury

Researchers have been studying the potential negative impacts of inhaling microscopic graphene on mammals. In one 2016 experiment, mice with graphene placed in their lungs experienced localized lung tissue damage, inflammation, formation of granulomas (where the body tries to wall off the graphene), and persistent lung injury, similar to what occurs when humans inhale asbestos. A different study from 2013 found that when human cells were bound to graphene, the cells were damaged.

In order to mimic human lungs, scientists have developed biological models designed to simulate the impact of high concentration aerosolized graphene—graphene in the form of a fine spray or suspension in air—on industrial workers. One such study published in March 2020 found that a lifetime of industrial exposure to graphene induced inflammation and weakened the simulated lungs’ protective barrier.

It’s important to note that these models are not perfect options for studying the dramatically lower levels of graphene inhaled from a face mask, but researchers have used them in the past to learn more about these sorts of exposures. A study from 2016 found that a small portion of aerosolized graphene nanoparticles could move down a simulated mouth and nose passages and penetrate into the lungs. A 2018 study found that brief exposure to a lower amount of aerosolized graphene did not notably damage lung cells in a model.

From my perspective as a researcher, this trio of findings suggest that a little bit of graphene in the lungs is likely OK, but a lot is dangerous.

Although it might seem obvious to compare inhaling graphene to the well-known harms of breathing in asbestos, the two substances behave differently in one key way. The body’s natural system for disposing of foreign particles cannot remove asbestos, which is why long-term exposure to asbestos can lead to the cancer mesothelioma. But in studies using mouse models to measure the impact of high dose lung exposure to graphene, the body’s natural disposal system does remove the graphene, although it occurs very slowly over 30 to 90 days.

The findings of these studies shed light on the possible health impacts of breathing in microscopic graphene in either small or large doses. However, these models don’t reflect the full complexity of human experiences. So the strength of the evidence about either the benefit of wearing a graphene mask, or the harm of inhaling microscopic graphene as a result of wearing it, is very weak.

No obvious benefit but theoretical risk

Graphene is an intriguing scientific advance that may speed up the demise of COVID-19 virus particles on a face mask. In exchange for this unknown level of added protection, there is a theoretical risk that breathing through a graphene-coated mask will liberate graphene particles that make it through the other filter layers on the mask and penetrate into the lung. If inhaled, the body may not remove these particles rapidly enough to prevent lung damage.

The health department in Quebec is erring on the side of caution. Children are at very low risk of COVID-19 mortality or hospitalization, although they may infect others, so the theoretical risk from graphene exposure is too great. However, adults at high immediate risk of harm from contracting COVID-19 may choose to accept a small theoretical risk of long-term lung damage from graphene in exchange for these potential benefits.

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

When I first heard of blood clots in vaccinated people, I instantly recalled of a similar problem occurring while the mRNA platform was in study for a cancer therapy, by Moderna, I think, prior to Covid.
I couldn’t find that piece of information again, but during the research I discovered something even more revealing.

Blood clots in subjects of Covid gene therapies are very likely caused by defective coatings in magnetic particles used for magnetofection, which leads to cell-clogging.

Silviu “Silview” Costinescu

It has been more than plausibly theorized that the explanation for the magnetism in vaxxers is magnetofection, a method of transfection using magnetic fields.

Magnetofection is a very effective way of transfecting plasmid DNA into a variety of primary cells including primary neurons which are known to be notoriously difficult to transfect and very sensitive to toxicity.

From: Advanced Drug Delivery Reviews, 2011

For coincidence theorists, let me just add that the inventor of transfection is one of mRNA jabs inventors, Dr. Robert Malone, who has warned FDA on the dangers of these technologies, according to himself.

Scientifically trained at UC Davis, UC San Diego, and at the Salk Institute Molecular Biology and Virology laboratories, Dr. Robert Malone is an internationally recognized scientist (virology, immunology, molecular biology) and is known as one of the original inventors of mRNA vaccination and DNA Vaccination. His discoveries in mRNA non viral delivery systems are considered the key to the current COVID-19 vaccine strategies. Dr. Malone holds numerous fundamental domestic and foreign patents in the fields of gene delivery, delivery formulations, and vaccines.
Dr. Malone has close to 100 peer-reviewed publications and published abstracts and has over 11,477 citations of his peer reviewed publications, as verified by Google Scholar.  His google scholar ranking is “outstanding” for impact factors. He has been an invited speaker at over 50 conferences, has chaired numerous conferences and he has sat on or served as chairperson on numerous NIAID and DoD study sections.

Magnetofection basically involves attaching DNA onto a magnetic nanoparticle coated with a cationic polymer like polyethylenimine (PEI) [254,255]. The magnetic nanoparticles are generally made up of a biodegradable substance like iron oxide, and its coating onto the polymeric particle is done by salt-induced colloidal aggregation.
These prepared nanoparticles are then localized in the target organ by the application of an external magnetic field, which allows the delivery of attached DNA to the target organ, as shown in Figure 3.5. This method also increases the uptake of DNA into target cells as the contact time between the target organ and magnetic nanoparticles increases.
In addition, the magnetic field pulls the magnetic nanoparticles into the target cells, which also helps to increase the uptake of DNA [256,257]. In addition, the standard transfection using viral or nonviral vectors is also increased by the magnetofection.


This is a more powerful method of controlled and targeted delivery for gene therapies, in layman terms.

The problem with it is that it’s been proven to be very dangerous for lab animals and it’s not authorized for human use.

From Dr. Jane Ruby m as well as from Pfizer and Moderna we find out how these particles are packaged into the injectable concocts:

“Stew Peters interviews Dr Jane Ruby who confirms the magnetic effects that Covid vaxxed people have experienced. She says it is a deliberately made substance added to the vaccines. This shows criminal intent. It was added because it is an aggressive delivery system to get it into EVERY cell of your body. The process is called ‘Magnetofection’ and is available in scientific literature such as Pubmed. It concentrates the mRNA into people’s cells and forces your body to make these synthetic mRNA instructions even in places where they shouldn’t be located within the body.

It is a ‘forced delivery system’ and is called by the acronym of SPIONS – Supramagnetic Iron Oxide Nanoparticles. These particles use a lipid nanoparticle envelope to gain entry into the cells. It is done this way to protect mRNA because mRNA is easily degraded and this is also why the Pfizer vaccines are refrigerated at -70 degrees Fahrenheit as another form of protection.

There is a German company on the internet called ‘Chemicell’ which sells different chemicals which can make these magnetic fields around your molecules. You can buy 200 microgram vials of their product called, ‘Polymag’. These are developed and sold for research purposes only and are not to be used for human diagnostic or as a component of any drug intended for humans.

However at least Pfizer and Moderna are using this substance in their vaccines. Therefore it is vital that anyone thinking of taking a shot, obtain a full ingredient list to have full informed consent and to postpone getting the Covid Jab, as each day brings further information into the public domain. Dr Ruby is asked if this was deliberate by the manufacturers and answers that this substance doesn’t occur naturally. It had to be added into the vaccine.

Many have spoken about the Polyethelene Glycol or PEG which enables the vaccines to get through water based cell membranes as this is lipophilic – attracted to fats – but there are other places in the body where ‘God and Nature’ hadn’t intended these substances to be, but by using this delivery system of supra nanoparticles, you are creating a super delivery system which forces these substances into areas where they are not meant to be.”

. 2019 Nov;13(9):1197-1209. doi: 10.1080/17435390.2019.1650969. Epub 2019 Aug 22.

Superparamagnetic iron oxide nanoparticles (SPIONs) modulate hERG ion channel activity

Roberta Gualdani 1 2Andrea Guerrini 1Elvira Fantechi 1Francesco Tadini-Buoninsegni 1Maria Rosa Moncelli 1Claudio Sangregorio 1 3Affiliations expand

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as diagnostic agents in magnetic resonance imaging (MRI), for drug delivery vehicles and in hyperthermia treatment of tumors.

Although the potential benefits of SPIONs are considerable, there is a distinct need to identify any potential cellular damage associated with their use.

Since human ether à go-go-related gene (hERG) channel, a protein involved in the repolarization phase of cardiac action potential, is considered one of the main targets in the drug discovery process, we decided to evaluate the effects of SPIONs on hERG channel activity and to determine whether the oxidation state, the dimensions and the coating of nanoparticles (NPs) can influence the interaction with hERG channel.

Using patch clamp recordings, we found that SPIONs inhibit hERG current and this effect depends on the coating of NPs. In particular, SPIONs with covalent coating aminopropylphosphonic acid (APPA) have a milder effect on hERG activity. We observed that the time-course of hERG channel modulation by SPIONs is biphasic, with a transient increase (∼20% of the amplitude) occurring within the first 1-3 min of perfusion of NPs, followed by a slower inhibition. Moreover, in the presence of SPIONs, deactivation kinetics accelerated and the activation and inactivation I-V curves were right-shifted, similarly to the effect described for the binding of other divalent metal ions (e.g. Cd2+ and Zn2+).

Finally, our data show that a bigger size and the complete oxidation of SPIONs can significantly decrease hERG channel inhibition.

Taken together, these results support the view that Fe2+ ions released from magnetite NPs may represent a cardiac risk factor, since they alter hERG gating and these alterations could compromise the cardiac action potential.

MIT SAYS IT’S NOT JUST SPIONS, BUT ALSO LIONS:

HDT Bio, the biotechnology company in Seattle, has an alternative solution. Working with Deborah Fuller, a microbiologist at the University of Washington, it’s pioneering a different kind of protective bubble for the mRNAs. If it works, it would mean that an mRNA vaccine for covid-19 could be stable in a regular fridge for at least a month, or at room temperature for up to three weeks. 

Their method: instead of encasing the mRNA in a lipid nanoparticle, they’ve engineered molecules called lipid inorganic nanoparticles, or LIONs. The inorganic portion of the LION is a positively charged metal particle—so far they’ve been using iron oxide. The positively charged metal would bind to the negatively charged mRNA, which wraps around the LION. The resulting particle is solid, which creates more stability and reduces the reliance on refrigeration. 

A real-world study by the CDC backs up the clinical trial data from both mRNA vaccines—although the rise of the UK variant in the US is a cloud on the horizon.

“The cold chain has always been an issue for [the] distribution of vaccines, and it’s only magnified in a pandemic.”

Deborah Fuller

HDT Bio initially developed LIONs to treat liver cancer and tumors in the head and neck, but when the pandemic hit, they pivoted to trying the particles with mRNA vaccines. Early preclinical trials in nonhuman primates showed that the LION, combined with an mRNA vaccine for covid-19, worked as they’d hoped.

Carter of HDT Bio says that in an ideal situation, LIONs could be sent to clinics worldwide in advance, to be stored at room temperature or in a regular refrigerator, before being mixed into vaccine vials at clinics. Alternatively, the two could be premixed at a manufacturing facility. Either way, this method would make doses stable for at least a month in a regular refrigerator. 

Fuller says that some scientists have criticized the need for two vials—one for the LION and another for mRNA before they’re mixed together. “But I think the advantages of having an effective product more amenable to worldwide distribution outweighs those negatives,” she says.

HDT Bio is applying for permission to start human clinical trials in the US and is looking to start clinical trials in India this spring. In the US, it faces some unique challenges in FDA regulation, since the LION particles would be considered a drug separate from the vaccine. Regulators in Brazil, China, South Africa, and India—where HDT Bio is hoping to launch its product—don’t consider the LION a drug because it isn’t the active component, says Carter, meaning that there would be one less layer of regulation than in the US.

For now, it’s still very much an early-stage technology, says Michael Mitchell, a bioengineer at the University of Pennsylvania who works on drug delivery systems. He stresses that more research should reveal whether the iron oxide causes any side effects. – MIT Technology Review

Now here’s the bombshell:


This is no secret to experts, but it’s been revealed to me in the video presentation below, made in 2017 by reputed Prof Diana Borca, from Rensselaer Polytechnic Institute, who uses magnetic nanoparticles to treat diseases.
In order to get the magnetic nanoparticles into the right places, scientists like Diana have to figure out what kind of coating the nanoparticles need. Coatings help the nanoparticles get to the cells they want to treat without hurting the healthy cells.
And if the coating of the magnetic particles breaks, the result is “CLOGGING”, as Borca explains below. Which can translate as clotting, if in blood.
Who knows what they lead to when in other organs, strokes maybe?

So I think the only thing we’re missing from the puzzle is official hard evidence that they used magnetofection or magnetogentic methods.

But if it walks like a duck and quacks like a duck, only the government needs government papers to confirm it’s a duck


What each and every one of you can do until we find that evidence?

On screens we’re sound. Please help with the statistical and empirical tests!


Please help finding out if there’s a strong data and empirical correlation between blood clots and magnetism. Anyone you know that has been jabbed and experienced blood clots, heart or circulatory problems needs to take the magnet challenge right now! A strong enough correlation indicates causation.
If you make such a test, please reach us on our socials and communicate the result, whether positive or negative!
Also VAERS is exploding with reports of magnetism, please help analyzing the data to see if it pairs with clotting.
Thank you!

Also food for thought: isn’t this also related to the problems these GMO dupes experience during air-travel?
I’ll investigate this in a soon coming report.

References:

Nanoparticles in Translational Science and Medicine

Akira Ito, Masamichi Kamihira, in Progress in Molecular Biology and Translational Science, 2011

V Conclusion

This chapter highlighted magnetofection, magnetic patterning of cells, and construction of 3D tissue-like structures. Among them, Mag-TE for constructing 3D structures has been extensively studied, and various kinds of other tissues such as retinal pigment epithelial cell sheets,102 MSC sheets,44 and cardiomyocyte sheets,46 have been already generated. Tubular structures consisting of heterotypic layers of endothelial cells, smooth muscle cells, and fibroblasts have also been created.43 In this approach, magnetically labeled cells formed a cell sheet onto which a cylindrical magnet was rolled, which was removed after a tubular structure was formed. If these processes can be scaled up, there is great potential for these techniques in the treatment of a variety of diseases and defects.

In the translational research, toxicology of functional magnetite nanoparticles is an important issue. The main requisite for a cell-labeling technique is to preserve the normal cell behavior. As for biocompatibility of MCLs, no toxic effects against proliferation of several cell types were observed within the range of magnetite concentrations tested (e.g., human keratinocytes,63 < 50 pg-magnetite/cell; HUVECs,41 HAECs,42 human dermal fibroblasts,41 human smooth muscle cells,43 mouse fibroblast cells,43 canine urothelial cells,43 human MSCs,44 and rat MSCs45 < 100 pg/cell). Moreover, MCLs did not compromise MSC differentiation44,45 or electrical connections of cardiomyocytes.46 In addition, an in vivo toxicity of magnetite nanoparticles has been extensively studied. As an MRI contrast agent, ResovistR was first applied clinically for detecting liver cancer, since ResovistR is taken up rapidly by the reticuloendothelial system such as Kupffer cells of the liver compared with the uptake by cancer cells of the liver. In a preliminary study,103 the authors investigated the toxicity of systemically administered MCLs (90 mg, i.p.) in mice; none of the 10 mice injected with MCLs died during the study. Transient accumulation of magnetite was observed in the liver and spleen of the mice, but the magnetite nanoparticles had been cleared from circulation by hepatic Kupffer cells in the spleen by the 10th day after administration.103

In conclusion, magnetic nanoparticles have been developed into “functional” magnetite nanoparticles which are highly promising tools for a wide spectrum of applications in tissue engineering. The proven lack of toxicity of the functional magnetite nanoparticles is expected to provide exciting tools in the near future for clinical tissue engineering and regenerative medicine.View chapter

Viral and Nonviral Vectors for In Vivo and Ex Vivo Gene Therapies

A. Crespo-Barreda, … P. Martin-Duque, in Translating Regenerative Medicine to the Clinic, 2016

2.2.1 Magnetic Nanoparticles

One of the pioneers using magnetofection for in vitro applications was Lin et al.91 There are various cationic magnetic nanoparticles types that have the capacity to bind nucleotidic material on their surface. With this method, the magnetic nanoparticles are concentrated in the target cells by the influence of an external magnetic field (EMF). Normally, the internalization is accomplished by endocytosis or pinocytosis, so the membrane architecture stays intact. This is an advantage over other physical transfection methods. Other advantages are the low vector dose needed to reach saturation yield and the short incubation time needed to achieve high transfection efficiency. Moreover, with the application of an EMF, cells transfected with magnetic nanoparticles can be used to target the region of interest in vivo.

2.2.1.1 Iron Oxide Nanoparticles

The magnetic nanoparticles most used in magnetofection include the iron oxide nanoparticles (IONPs). IONPs are biodegradable and not cytotoxic and can be easily functionalized with PEI, PEG, or PLL. Poly-l-lysine-modified iron oxide nanoparticles (IONP–PLL) are good candidates as DNA and microRNA (miRNA) vectors because they bind and protect nucleic acids and showed high transfection efficiency in vitro. In addition, they are highly biocompatible in vivo.

Chen et al.92 used human vascular endothelial growth factor siRNA bound to superparamagnetic iron oxide nanoparticles (SPIONs) and it was capable of hepatocellular carcinoma growth inhibition in nude mice. Moreover, Li et al.93 demonstrated that the intravenous injection of IONP–PLL carrying NM23-H1 (a tumor suppressor gene) plasmid DNA significantly extended the survival time of an experimental pulmonary metastasis mouse model.

Another advantage of this kind of nanoparticles is that they can be used as MRI agents. Chen et al.94 bound siRNA to PEG-PEI SPIONs together to a gastric cancer-associated CD44v6 single-chain variable fragment. This bound permitted both cancer cell’s transfection and their visualization by MRI.

But those complexes might be used for cell therapies as well. Schade et al.95 used iron oxide magnetic nanoparticles (MNPs) to bind miRNA and transfect human mesenchymal stem cells. As the binding between the MNPs and PEI took place via biotin-streptavidin conjugation, these particles cannot pass the nuclear barrier, so they are good candidates to deliver miRNA, as it exerts its function in the cytosol. They functionalized the surface nanoparticles with PEI and were able to obtain a better transfection than PEI 72 h after transfection. Moreover, they demonstrated that magnetic polyplexes provided a better long-term effect, also when included inside of the stem cells.View chapter

Synthesis of Magnetic Iron Oxide Nanoparticles

Marcel Wegmann, Melanie Scharr, in Precision Medicine, 2018

4.1.4 Magnetofection

Another attempt to apply magnetic IONPs is the so-called magnetofection (MF) approach. Key factors enabling this method are IONPs that are coupled to vector DNA and guided by the influence of an external magnetic field. By this means, DNA can be transfected into cells of interest. One possibility to enable enhanced binding capabilities of the negatively charged DNA to magnetic IONP beads is the coating IONPs with a positively charged material such as polyethylenimine. The efficiency of the vectors has hence shown to increase up to several thousand times (Scherer et al., 2002). The above depicted engagement of IONPs in MF has shown to be universally applicable to viral and nonviral vectors. This is mostly because it is very rapid and simple. Furthermore, it is a very attractive approach since it yields saturation level transfection at low-dose in vitro (Krotz et al., 2003). Fernandes and Chari (2016) have demonstrated an approach delivering DNA minicircles (mcDNA) to neural stem cells (NSCs) by means of MF. DNA minicircles are small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids. This could be shown to be very beneficial for the use of genetically engineered NSC transplant populations in regenerative neurology. The aim was to improve the release of biomolecules in ex vivo gene therapy. It could be demonstrated that MF of DNA minicircles is very safe and provided for sustained gene expression for up to 4 weeks. It is described to have high potential as clinically translatable genetic modification strategy for cell therapy (Fernandes and Chari, 2016). The last in vitro application for magnetic nanoparticles to be presented in this chapter will be tissue repair.View chapter

Scientific Fundamentals of Biotechnology

Aline Do Minh, … Amine A. Kamen, in Comprehensive Biotechnology (Third Edition), 2019

1.26.2.1.7 Magnet-Mediated Transfection

Two methods rely on the application of a magnetic field for gene transfer. Magnetofection uses magnetic nanoparticles coated with DNA in presence of a magnetic field. The nucleic acid-nanoparticle complexes are driven toward and into the target cells by magnetic force application. Gene transfer is enhanced by magnetofection as DNA-loaded particles are guided and maintained in close contact with the target cells. Cellular uptake through endocytosis is thus increased as well. The process has been mainly applied to cultured cells and has been proven more efficient than other chemical methods in some cases.8 The second method is magnetoporation in which membrane permeability is increased, triggered by the applied magnetic field.9View chapter

Fabrication and development of magnetic particles for gene therapy

S. Uthaman, … C.-S. Cho, in Polymers and Nanomaterials for Gene Therapy, 2016

9.4.1 Magnectofection-based gene delivery

For gene therapy applications, magnetic particles are generally used for increasing the transfection efficiencies of cultured cells, a technique known as magnetofection [91–104] in which magnetic particles and nucleic acids are mixed together and then added to the cell culture media. The nucleic acid-bound magnetic particles then move from the media to the cell surface upon the application of an external magnetic force, as shown in Figure 9.1. The principle advantage of this approach is the rapid sedimentation of the gene-therapeutic agent onto the target area, thereby reducing the time and dose of vector to achieve highly efficient transfection, with lower cell cytotoxicity.

In in vivo magentofection, the magnetic field is focused over the target site. This method has the potential not only to enhance transfection efficiency but also to target the therapeutic gene to a specific organ or site, as shown in Figure 9.2.

Generally, magnetic particles carrying therapeutic genes are injected intravenously. As the particles flow through the bloodstream, they are captured at the target site using very strong, high-gradient external magnets. Once they are captured, the magnetic particles carrying the therapeutic gene are taken up by the tissue, followed by release of the gene via enzymatic cleavage of cross-linked molecules or degradation of the polymer matrix. If DNA is embedded inside or within the coating material, the magnetic field must be applied to heat the particles and release the gene from the magnetic carrier [105].View chapter

Nonviral Vectors for Gene Therapy

Tyler Goodwin, Leaf Huang, in Advances in Genetics, 2014

3.4 Magnetic-Sensitive Nanoparticles (Magnetofection)

In an attempt to address the transient damage caused by the invasive methods mentioned above (i.e., hydrodynamic injection and electroporation), magnetofection techniques have been introduced. This technique uses the physical method of a magnetic field to direct the deliver of genetic material to the desired target site. The concept involves attaching DNA to a magnetic nanoparticle usually consisting of a biodegradable substance such as iron oxide and coated with cationic polymer such as PEI (Mulens, Morales, & Barber, 2013). These magnetic nanoparticles are then targeted to the tissue through a magnetic field generated by an external magnet. The magnetic nanoparticles are pulled into the target cells increasing the uptake of DNA. This technique is noninvasive and can precisely target the genetic material to the desired site while increasing gene expression. The drawback to magnetofection is the need to formulate magnetic nanoparticles complexed with naked DNA, as well as the need for strong external magnets.View chapter

Small interfering RNAs (siRNAs) as cancer therapeutics

G. Shim, … Y-K. Oh, in Biomaterials for Cancer Therapeutics, 2013

11.3.5 Stimulus-guided delivery

Stimulus-guided delivery is a non-invasive and convenient approach for clinical applications. Several methods in this category, including electroporation, ultrasound and magnetofection, have been used to deliver siRNAs to specific tissue sites. Owing to constraints associated with application of external stimuli under in vivo conditions, most such studies have been done in vitro. However, in vivo applications of stimulus-guided delivery of anticancer siRNAs are increasingly being reported.

Electroporation has been studied as a means for facilitating in vivo delivery of anticancer siRNAs. Notably, an electroporation method employing a new type of ‘plate and fork’ type electrode has been applied in vivo in mice (Takei et al., 2008). In this application, a chemically modified form of VEGF-specific siRNA in phosphate-buffered saline was intratumorally administered at three doses of 0.08, 0.17 and 0.33 mg/kg, or intravenously administered at a single dose of 6.6 mg/kg. Then, an electronic pulse was applied to a pair of plate and fork electrodes pre-inserted into PC-3-xenografted tumour tissues. Application of electroporation inhibited tumour growth to a similar degree after 0.17 mg/kg intratumoral and 6.6 mg/kg intravenous doses, in each case producing a 40-fold greater inhibitory effect than a local dose. Notably, the duration of the antitumour effect was maintained for 20 days after a single injection via the local or systemic route.

Magnetically guided in vivo siRNA delivery has been investigated using magnetic crystal-lipid nanostructures (Namiki et al., 2009). In this study, a magnetite nanocrystal was coated with oleic acid and a cationic lipid shell, and complexed to EGFR-specific siRNA. Following intravenous administration to mice, siRNA complexed to the magnetic core-encapsulated cationic lipid shell showed a rank order of tissue distribution of spleen followed by liver and lung. For in vivo magnetofection, titanium nitride-coated magnets were internally implanted under the skin peripheral to tumour lesions or were externally placed onto the skin. Mice were intravenously given a total of eight 0.3 mg/kg doses of siRNA complexed to cationic nanoshells administered every other day. Both internal and external applications of a magnetic field reduced tumour (MKN-74 or NUGC-4) volume by 50% compared with the control group 28 days after the initiation of treatment.

Ultrasound-guided siRNA delivery has also been used to increase the in vivo delivery of siRNAs. Ultrasound can produce cavitation, thereby resulting in transient disruptions in cell membranes within tissues (Vandenbroucke et al., 2008). Few studies have addressed the in vivo antitumour effects of ultrasound-guided anticancer siRNAs. To date, most such studies have evaluated the feasibility of the method using siRNAs specific for reporter genes, such as enhanced green fluorescent protein (Negishi et al., 2008). In this latter study, PEG-modified cationic lipid nanobubbles entrapping the ultrasound imaging gas perfluoropropane were complexed with enhanced green fluorescent protein-specific siRNA and intramuscularly administered at a dose of 0.15 mg/kg to mice transfected 1 day prior with enhanced green fluorescent protein-encoding plasmid DNA. Three days after siRNA injection and ultrasound application, fluorescent protein levels at the injection sites were reduced.

Although the feasibility of in vivo applications of stimulus-guided delivery of anticancer siRNA has been demonstrated and positive results have been reported, the ultimate success of these delivery methods may depend on the development of devices capable of providing a sufficient stimulus to tumour tissues deep within the body. Moreover, for in vivo systemic administration, delivery systems that carry both external stimulus-responsive agents and siRNA must meet more general requirements, such as in vivo stability, low toxicity and enhanced tumour tissue accumulation. With the concurrent progress in medical device bioengineering and siRNA delivery technologies, it can be expected that stimulus-guided strategies will be used in more diverse in vivo applications to facilitate anticancer siRNA delivery.View chapter

Gene Delivery Using Physical Methods

Kaustubh A. Jinturkar, … Ambikanandan Misra, in Challenges in Delivery of Therapeutic Genomics and Proteomics, 2011

3.9 Magnetofection

Various physical methods of gene delivery have been developed, and each one has its own merits and demerits. EP is particularly important for introducing DNA to superficial areas, but to deliver DNA to particular organs, surgery is required. To overcome this problem and to enhance the introduction of gene vectors into cells [254], the new means of physical gene delivery is magnetofection, which delivers DNA to the target organ, using the magnetic field. Magnetofection basically involves attaching DNA onto a magnetic nanoparticle coated with a cationic polymer like polyethylenimine (PEI) [254,255]. The magnetic nanoparticles are generally made up of a biodegradable substance like iron oxide, and its coating onto the polymeric particle is done by salt-induced colloidal aggregation. These prepared nanoparticles are then localized in the target organ by the application of an external magnetic field, which allows the delivery of attached DNA to the target organ, as shown in Figure 3.5. This method also increases the uptake of DNA into target cells as the contact time between the target organ and magnetic nanoparticles increases. In addition, the magnetic field pulls the magnetic nanoparticles into the target cells, which also helps to increase the uptake of DNA [256,257]. In addition, the standard transfection using viral or nonviral vectors is also increased by the magnetofection.

The magnetofection has some drawbacks: a particle size below 50 nm renders it not suitable for magnetic targeting and too large a particle size (more than 5 μm) retards the entry of magnetic nanoparticles inside the blood capillaries. The blood flow rate also affects the transfection efficacy of this method; for example, the flow rate of around 20 cm/s in the human aorta makes the transfection tricky. The external magnetic flux density and gradient decreases at a distance from the magnetic pole, which also affects the transfection efficacy.

Primary endothelial cells are effectively transfected by magnetofection [254,258]. In addition, magnetofection is effective for in vitro and in vivo delivery of DNA to target cells like those in the GI tract and blood vessels [254], and for antisense ODNs delivery [259]. Other applications include advances in ex vivo tissue engineering, development of tumor vaccines, localized therapy for cancer, and cardiovascular therapy [260]. Significant enhancement in reporter gene expression in a short time has been observed in the ex vivo porcine airway model; this may be attributed to an increase in contact time with mucociliary cells, thereby reducing their clearance from the target site [261]. A study carried out using magnetic albumin microspheres with entrapped doxorubicin in the rat model for tumors resulted in a high level of tumor remission in animals compared to animals treated with free doxorubicin, placebo microspheres, or nonlocalized doxorubicin microspheres, which resulted in considerable enlargement in tumor size associated with metastases and subsequent death [262,263]. The magnetic nanoparticles with doxorubicin are also under clinical trial [264]. Magnetofection has been widely used for viral and nonviral vectors and also for the delivery of DNA, nucleic acids, and siRNA [260,265,266].

In conclusion, magnetofection is an efficient system for gene delivery and has the potential to bring in vitro and in vivo transgene transfection in the target organ. The limitations of this delivery system are overcome by the application of proper formulations and novel magnetic field skills.View chapter

Gene therapy approaches in central nervous system regenerative medicine

Assumpcio Bosch, Miguel Chillon, in Handbook of Innovations in Central Nervous System Regenerative Medicine, 2020

10.2.6 Nonviral vectors

Nonviral vectors group a heterogeneous variety of elements that can be classified as naked DNA or RNA, liposome-DNA complexes (lipoplexes), and polymer-DNA complexes (polyplexes). Since the beginning of the gene therapy field, nonviral vectors have received significant attention due to their reduced pathogenicity, lower immunotoxicity, and low cost and ease of production over viral approaches. To date, a myriad of delivery systems grouped as physical methods and chemical carriers have been reported. Physical methods such as direct injection, ballistic DNA, electroporation, sonoporation, photoporation, magnetofection, hydroporation, and mechanical massage, employ physical force to cross the cell membrane barrier. Chemical carriers such as (1) inorganic particles (calcium phosphate, silica, gold, but also magnetic nanoparticles, fullerenes, carbon nanotubes, quantum dots, and supramolecular systems); (2) lipid-based (cationic lipids, lipid-nano emulsions, solid lipid nanoparticles); (3) peptide-based; and (4) polymer-based (i.e., polyethylenimine, chitosan, dendrimers, and polymethacrylate) form small size complexes with nucleic acids to help them cross the cell membrane efficiently (see ref [29] for extensive review). However, despite the large number of different nonviral vectors still, there is poor transduction efficiency of the target cells as well as low and transient transgene expression. Due to it, nonviral vectors account for less than 25% of the clinical assays, mainly for cancer and cardiovascular diseases, being naked/plasmid DNA (452 clinical assays) and lipofection (119 clinical assays) the systems more frequently used, while all the rest of the nonviral vector account only for 3% of the assays.View chapter

To be continued?
Our work and existence, as media and people, is funded solely by our most generous readers and we want to keep this way.
Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!

! Articles can always be subject of later editing as a way of perfecting them

ORDER