Remember past spring when magnetic ferritin in Covid bioweapons was a conspiracy theory and we were getting our YouTube channels and socials wiped out for exposing it? That was fun*! (* not)
THE VERY SHORT COURSE, LET’S SEE HOW LONG DOES THIS SURVIVE ON YOUTUBE THIS TIME
The spike ferritin nanoparticle (SpFN) vaccine was designed as a ferritin-fusion recombinant protein for expression as a nanoparticle, and has been described in detail previously (20). Briefly, the spike protein sequence was derived from the Wuhan-Hu-1 genome sequence (GenBank accession number: MN908947.3)
The present invention provides methods and compositions for the remote control of cell function based on the use of radiofrequency waves to excite nanoparticles targeted to specific cell types. The nanoparticles may be applied to the target cell extracellularly and/or expressed intracellularly. The cell type of interest expresses a temperature sensitive channel wherein excitation of the nanoparticles results in a localized temperature increase that is transduced into a cellular response. Such cellular responses may include, for example, increases in gene expression resulting in production of one or more physiologically active proteins. The expression of such proteins can be used to treat a variety of different inherited or acquired diseases or disorders in a subject. Accordingly, the invention provides a generic approach for treatment of any disease associated with a protein deficiency. – SOURCE
And, coincidentally, of course:
In patients with severe COVID-19 disease, decreased hemoglobin along with elevated erythrocyte sedimentation rate (ESR), C-reactive protein, lactate dehydrogenase, albumin [62], serum ferritin [63], and low oxygen saturation [64] provide additional support for this hypothesis.
“The spike protein from SARS-CoV-2 is quite large, so scientists often formulate abridged versions that are simpler to make and easier to use. After closely examining the spike, Kim and his team chose to remove a section near the bottom.
To complete their vaccine, they combined this shortened spike with nanoparticles of ferritin – an iron-containing protein – which has been previously tested in humans. Before the pandemic, Powell had been working with these nanoparticles to develop an Ebola vaccine. Together with scientists at the SLAC National Accelerator Laboratory, the researchers used cryo-electron microscopy to get a 3D image of the spike ferritin nanoparticles in order to confirm that they had the proper structure.
For the mouse tests, the researchers compared their shortened spike nanoparticles to four other potentially useful variations: nanoparticles with full spikes, full spikes or partial spikes without nanoparticles, and a vaccine containing just the section of the spike that binds to cells during infection. Testing the effectiveness of these vaccines against actual SARS-CoV-2 virus would have required the work to be done in a Biosafety Level 3 lab, so the researchers instead used a safer pseudo-coronavirus that was modified to carry SARS-CoV-2’s spikes.”
What a “GenBank accession number” looks like: characters on a server.
So they took a code from a server, like all the other vaccine makers (see link above), they took a nanoparticle that was ‘illegal’ to discuss on TheirTubes and they did what?
US Army Creates Single Vaccine Against All COVID & SARS Variants, Researchers Say
Within weeks, Walter Reed researchers expect to announce that human trials show success against Omicron—and even future strains.
BY TARA COPP, SENIOR PENTAGON REPORTER, DEFENSE ONE DECEMBER 21, 2021, Updated on Dec. 22
Within weeks, scientists at the Walter Reed Army Institute of Research expect to announce that they have developed a vaccine that is effective against COVID-19 and all its variants, even Omicron, as well as previous SARS-origin viruses that have killed millions of people worldwide.
The achievement is the result of almost two years of work on the virus. The Army lab received its first DNA sequencing of the COVID-19 virus in early 2020. Very early on, Walter Reed’s infectious diseases branch decided to focus on making a vaccine that would work against not just the existing strain but all of its potential variants as well.
Walter Reed’s Spike Ferritin Nanoparticle COVID-19 vaccine, or SpFN, completed animal trials earlier this year with positive results. Phase 1 of human trials, wrapped up this month, again with positive results that are undergoing final review, Dr. Kayvon Modjarrad, director of Walter Reed’s infectious diseases branch, said in an exclusive interview with Defense One on Tuesday. The new vaccine will still need to undergo phase 2 and phase 3 trials.
A schematic visualization of the ferritin nanoparticle with shortened coronavirus spike proteins, which is the basis of a SARS-CoV-2 vaccine candidate from Stanford. (SOURCE)
“We’re testing our vaccine against all the different variants, including Omicron,” Modjarrad said.
On Wednesday, Walter Reed officials said in a statement that its vaccine “was not tested on the Omicron variant,“ but later clarified in an email to Defense One that while the recently discovered variant was not part of the animal studies, it is being tested in the lab against clinical human trial samples. These “neutralization assays” test whether antibodies can inhibit the growth of a virus.
“We want to wait for those clinical data to be able to kind of make the full public announcements, but so far everything has been moving along exactly as we had hoped,” Modjarrad said.
Unlike existing vaccines, Walter Reed’s SpFN uses a soccer ball-shaped protein with 24 faces for its vaccine, which allows scientists to attach the spikes of multiple coronavirus strains on different faces of the protein.
“It’s very exciting to get to this point for our entire team and I think for the entire Army as well,” Modjarrad said.
That moment when US Army announces ferritin-based vaccines in December, and my reports about it were getting deleted by LibtardTech last summer:
Produced May 2021
These ferritin nanoparticles are rapidly drained to lymph nodes and target dendritic cells, especially CD8α+ population, upon subcutaneous immunization.
SILVER SPRING, Md. – A series of recently published preclinical study results show that the Spike Ferritin Nanoparticle (SpFN) COVID-19 vaccine developed by researchers at the Walter Reed Army Institute of Research (WRAIR) not only elicits a potent immune response but may also provide broad protection against SARS-CoV-2 variants of concern as well as other coronaviruses.
Scientists in WRAIR’s Emerging Infectious Diseases Branch (EIDB) developed the SpFN nanoparticle vaccine, based on a ferritin platform, as part of a forward-thinking “pan-SARS” strategy that aims to address the current pandemic and acts as a first line of defense against variants of concern and similar viruses that could emerge in the future.
“The accelerating emergence of human coronaviruses throughout the past two decades and the rise of SARS-CoV-2 variants, including most recently Omicron, underscore the continued need for next-generation preemptive vaccines that confer broad protection against coronavirus diseases,” said Dr. Kayvon Modjarrad, Director of the Emerging Infectious Diseases Branch at WRAIR, co-inventor of the vaccine and the U.S. Army lead for SpFN. “Our strategy has been to develop a ‘pan-coronavirus’ vaccine technology that could potentially offer safe, effective and durable protection against multiple coronavirus strains and species.”
Pre-clinical studies published today in Science Translational Medicine indicate that the SpFN vaccine protects non-human primates from disease caused by the original strain of SARS-CoV-2 and induces highly-potent and broadly-neutralizing antibody responses against major SARS-CoV-2 variants of concern including the SARS-CoV-1 virus that emerged in 2002.
SpFN entered Phase 1 human trials in April 2021. Early analyses, expected to conclude this month, will provide insights into whether SpFN’s potency and breadth, as demonstrated in preclinical trials, will carry over into humans. The data will also allow researchers to compare SpFN’s immune profile to that of other COVID-19 vaccines already authorized for emergency use.
“This vaccine stands out in the COVID-19 vaccine landscape,” Modjarrad said. “The repetitive and ordered display of the coronavirus spike protein on a multi-faced nanoparticle may stimulate immunity in such a way as to translate into significantly broader protection.”
WRAIR developed a secondary candidate vaccine, a SARS-CoV-2 Spike Receptor-Binding Domain Ferritin Nanoparticle (RFN) vaccine, which targets a smaller part of the coronavirus Spike protein than the SpFN vaccine. Results from a study, published recently in the Proceedings of the National Academy of Sciences, show that this vaccine potentially offers similar protection against an array of SARS-CoV-2 variants and SARS-CoV-1.
“The RFN vaccine candidate is more compact and has some natural advantages as we try to increase the immune response against multiple coronaviruses using a single vaccine platform, so it is still under consideration as part of our pan-coronavirus vaccine development pipeline,” said WRAIR structural biologist and vaccine co-inventor, Dr. Gordon Joyce.
“The threat from COVID-19 continues as it evolves, and eventually there will be other emerging disease threats,” said Dr. Nelson Michael, Director of the Center for Infectious Diseases Research at WRAIR. “Our investment in developing a next generation vaccine is an important step towards getting ahead of COVID-19 and future disease threats.”
A SARS-CoV-2 spike ferritin nanoparticle vaccine protects against heterologous challenge with B.1.1.7 and B.1.351 virus variants in Syrian golden hamsters
We’ve already published some of that literature past spring.. With what occasion? Everything will become round again if you (re)visit this pivotal moment in independent journalism that will keep rocking the official narrative:
Those poor people sticking forks and cellphones on their foreheads seem to be the lab rats for this new escalation in the Fourth Industrial Revolution by the World Psychopaths Forum.
CAN YOU DO ‘MAGNETIC TRANSCRANIAL STIMULATION” WITHOUT FERRITIN OR GRAPHENE AMPING YOUR BRAIN?
And if you want an even larger context, what better evidence that Pharmafia, Big Tech and the Military are not separate entities, they’re rather arms of a common enterprise I like to call “The Military BioTech Complex”.
If you can steal a few moments of peace and warmth with the dearest ones, take good advantage, for me too, I can’t, and these may be our last days before the war on us escalates from psychological and biochemical to kinetic. Then arm up to hold your positions and make it through the Darkest Winter! Happy holidays!
To be continued? Our work and existence, as media and people, is funded solely by our most generous supporters. But we’re not really covering our costs so far, and we’re in dire needs to upgrade our equipment, especially for video production. Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!
! Articles can always be subject of later editing as a way of perfecting them
I can’t find the irony because I’m distracted by the facts. The highlights in the text are mine, they are the key.
Flipping a Switch Inside the Head
With new technology, scientists are able to exert wireless control over brain cells of mice with just the push of a button. The first thing they did was make the mice hungry.
By W. Wayt Gibbs, APRIL 1, 2017
READY YOUR TINFOIL HATS—mind control is not as far-fetched an idea as it may seem. In Jeffrey M. Friedman’s laboratory, it happens all the time, though the subjects are mice, not people.
Friedman and his colleagues have demonstrated a radio-operated remote control for the appetite and glucose metabolism of mice—a sophisticated technique to wirelessly alter neurons in the animals’ brains. At the flick of a switch, they are able to make mice hungry—or suppress their appetite—while the mice go about their lives normally. It’s a tool they are using to unravel the neurological basis of eating, and it is likely to have applications for studies of other hard-wired behaviors.
Friedman, Marilyn M. Simpson Professor, has been working on the technique for several years with Sarah Stanley, a former postdoc in his lab who now is assistant professor at the Icahn School of Medicine at Mount Sinai, and collaborators at Rensselaer Polytechnic Institute. Aware of the limitations of existing methods for triggering brain cells in living animals, the group set out to invent a new way. An ideal approach, they reasoned, would be as noninvasive and non-damaging as possible. And it should work quickly and repeatedly.
Although there are other ways to deliver signals to neurons, each has its limitations. In deep-brain stimulation, for example, scientists thread a wire through the brain to place an electrode next to the target cells. But the implant can damage nearby cells and tissues in ways that interfere with normal behavior. Optogenetics, which works similarly but uses fiber optics and a pulse of light rather than electricity, has the same issue. A third strategy—using drugs to activate genetically modified cells bred into mice—is less invasive, but drugs are slow to take effect and wear off.
The solution that Friedman’s group hit upon, referred to as radiogenetics or magnetogenetics, avoids these problems. With their method, published last year in Nature, biologists can turn neurons on or off in a live animal at will—quickly, repeatedly, and without implants—by engineering the cells to make them receptive to radio waves or a magnetic field.
“In effect, we created a perceptual illusion that the animal had a drop in blood sugar.”
“We’ve combined molecules already used in cells for other purposes in a manner that allows an invisible force to take control of an instinct as primal as hunger,” Friedman says.
The method links five very different biological tools, which can look whimsically convoluted, like a Rube Goldberg contraption on a molecular scale. It relies on a green fluorescent protein borrowed from jellyfish, a peculiar antibody derived from camels, squishy bags of iron particles, and the cellular equivalent of a door made from a membrane-piercing protein—all delivered and installed by a genetically engineered virus. The remote control for this contraption is a modified welding tool (though a store-bought magnet also works).
The researchers’ first challenge was to find something in a neuron that could serve as an antenna to detect the incoming radio signal or magnetic field. The logical choice was ferritin, a protein that stores iron in cells in balloon-like particles just a dozen nanometers wide. Iron is essential to cells but can also be toxic, so it is sequestered in ferritin particles until it is needed. Each ferritin particle carries within it thousands of grains of iron that wiggle around in response to a radio signal, and shift and align when immersed in a magnetic field. We all have these particles shimmying around inside our brain cells, but the motions normally have no effect on neurons.
Friedman and Stanley, with equipment they use to send radio waves. Photo by Zachary Veilleux
Friedman’s team realized that they could use a genetically engineered virus to create doorways into a neuron’s outer membrane. If they could then somehow attach each door to a ferritin particle, they reasoned, they might be able to wiggle the ferritin enough to jostle the door open. “The ‘door’ we chose is called TRPV1,” says Stanley. “Once TRPV1 is activated, calcium and sodium ions would next flow into the cell and trigger the neuron to fire.” The bits borrowed from camels and jellyfish provided what the scientists needed to connect the door to the ferritin (see How to outfit a brain sidebar, right).
Once the team had the new control mechanism working, they put it to the test. For Friedman and Stanley, whose goal is to unravel the biological causes of overeating and obesity, the first application was obvious: Try to identify specific neurons involved in appetite. The group modified glucose-sensing neurons—cells that are believed to monitor blood sugar levels in the brain and keep them within normal range—to put them under wireless control. To accomplish this, they inserted the TRPV1 and ferritin genes into a virus and—using yet another genetic trick—injected them into the glucose-sensing neurons. They could then fiddle with the cells to see whether they are involved, as suspected, in coordinating feeding and the release of hormones, such as insulin and glucagon, that keep blood glucose levels in check.
HOW TO OUTFIT A BRAIN FOR RADIO CONTROL Scientists have come up with a clever way to control neurons via radio by cobbling together genes from humans, camels, and jellyfish. They use an engineered virus to install a door into each target neuron’s outer membrane, then jostle the door open using ferritin particles that respond to strong radio signals. Once the door opens, calcium ions pour into the cell and trigger the neuron to fire. 1. To install the radiogenetics system into neurons, the scientists equipped an adenovirus with the various genes needed to make the system work. Then they squirted the modified virus onto the brain cells they wanted to alter. 2. One of the added genes produces TRPV1, a protein that normally helps cells detect heat and motion. Within each neuron, the TRPV1 protein (pink) embeds itself into the cell’s outer membrane. Like a door, it can change shape to open or shut an ion channel. To add a knob to the door, the researchers stitched TRPV1 to a “nanobody” (violet)—an unusually simple variety of antibody found in camels. 3. Iron-filled ferritin particles (green) serve as the system’s sensor. To allow them to grab onto the nanobody doorknob, the researchers tacked on a gene for GFP—a jellyfish protein that glows green under ultraviolet light. By design, the nanobody and GFP stick together tightly. The system is now connected. When exposed to strong radio waves or magnetic fields, the ferritin particles wiggle, the ion channel opens, and calcium ions (red) flow in to activate the cell.
Once the virus had enough time to infect and transform the target neurons, the researchers switched on a radio transmitter tuned to 465 kHz, a little below the band used for AM radio.
The neurons responded. They began to fire, signaling a shortage of glucose even though the animal’s blood sugar levels were normal. And other parts of the body responded just as they would to a real drop in blood sugar: insulin levels fell, the liver started pumping out more glucose, and the animals started eating more. “In effect,” Friedman says, “we created a perceptual illusion that the animal had low blood glucose even though the levels were normal.”
Inspired by these results, the researchers wondered if magnetism, like radio waves, might trigger ferritin to open the cellular doors. It did: When the team put the mice cages close to an MRI machine, or waved a rare-earth magnet over the animals, their glucose-sensing neurons were triggered.
Stimulating appetite is one thing. Could they also suppress it? The group tweaked the TRPV1 gene so it would pass chloride, which acts to inhibit neurons. Now when they inserted the modified TRPV1 into the neurons, the rush of chloride made the neurons behave as if the blood was overloaded with glucose. Insulin production surged in the animals, and they ate less. “This seems to indicate clearly that the brain as well as the pancreas is involved in glucose regulation,” Friedman says.
Friedman and Stanley hope that biologists will be able to use the remote-control system to tackle a range of neural processes other than appetite. And beyond being a basic research tool, the method could potentially lead to novel therapies for brain disorders.
For example, one could imagine using it to treat Parkinson’s disease or essential tremor—conditions that are sometimes treated by deep brain stimulation, via wires implanted into patients’ brains and connected to a battery pack tucked into the chest. Potentially, it would be less invasive to inject the crippled virus into the same spot of the brain and let it permanently modify the cells there, making them responsive to wireless control.
In theory, it might also be possible to make a patient’s own cells receptive to electromagnetic waves by removing them from the body, delivering TRPV1 and ferritin, and then putting the cells back, Friedman says. This would be a protocol not unlike those currently used in stem cell treatments and some cancer immunotherapies, in which patients’ own cells are engineered and reimplanted back into their bodies.
At this point, however, the system’s clinical usefulness is a question of speculation. “We are a long way from using it in humans for medical treatments,” Friedman says. “Much would need to be done before it could even be tested.”
To be continued? Our work and existence, as media and people, is funded solely by our most generous supporters. But we’re not really covering our costs so far, and we’re in dire needs to upgrade our equipment, especially for video production. Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!
! Articles can always be subject of later editing as a way of perfecting them
DNA harvesting, mRNA technologies, mind-reading and more – this was the official race start signal at the Transhumanist Olympics, all the way back in 2013
The vision for the BRAIN Initiative is to combine these areas of research into a coherent, integrated science of cells, circuits, brain and behavior.
Not often mentioned, IARPA is CIA’s DARPA, an even more secretive, dark and psychopathic agency.
How The BRAIN Initiative® workS
Given the ambitious scope of this pioneering endeavor, it was vital that planning be informed by a wide range of expertise and experience. Therefore, NIH established a high level working group of the Advisory Committee to the NIH Director (ACD) to help shape this new initiative.
This working group, co-chaired by Dr. Cornelia “Cori” Bargmann (The Rockefeller University) and Dr. William Newsome (Stanford University) sought broad input from the scientific community, patient advocates, and the general public. Their report, BRAIN 2025: A Scientific Vision, released in June 2014 and enthusiastically endorsed by the ACD, articulated the scientific goals of The BRAIN Initiative® and developed a multi-year scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
Of course, a goal this audacious will require ideas from the best scientists and engineers across many diverse disciplines and sectors. Therefore, NIH is working in close collaboration with other government agencies, including the Defense Advanced Research Projects Agency (DARPA), National Science Foundation (NSF), the U.S. Food and Drug Administration (FDA) and Intelligence Advanced Research Projects Activity (IARPA). Private partners are also committed to ensuring success through investment in The BRAIN Initiative®.
Five years ago a project such as this would have been considered impossible. Five years from now will be too late. While the goals are profoundly ambitious, the time is right to inspire a new generation of neuroscientists to undertake the most groundbreaking approach ever contemplated to understanding how the brain works, and how disease occurs. Source: NIH
Remarks by the President on the BRAIN Initiative and American Innovation
East Room 10:04 A.M. EDT
THE PRESIDENT:
Thank you so much. (Applause.)
Thank you, everybody. Please have a seat. Well, first of all, let me thank Dr. Collins not just for the introduction but for his incredible leadership at NIH. Those of you who know Francis also know that he’s quite a gifted singer and musician. So I was asking whether he was going to be willing to sing the introduction — (laughter) — and he declined. But his leadership has been extraordinary. And I’m glad I’ve been promoted Scientist-in-Chief. (Laughter.)
Given my grades in physics, I’m not sure it’s deserving. But I hold science in proper esteem, so maybe that gives me a little credit. Today I’ve invited some of the smartest people in the country, some of the most imaginative and effective researchers in the country — some very smart people to talk about the challenge that I issued in my State of the Union address: to grow our economy, to create new jobs, to reignite a rising, thriving middle class by investing in one of our core strengths, and that’s American innovation. Ideas are what power our economy. It’s what sets us apart. It’s what America has been all about. We have been a nation of dreamers and risk-takers; people who see what nobody else sees sooner than anybody else sees it. We do innovation better than anybody else — and that makes our economy stronger.
When we invest in the best ideas before anybody else does, our businesses and our workers can make the best products and deliver the best services before anybody else. And because of that incredible dynamism, we don’t just attract the best scientists or the best entrepreneurs — we also continually invest in their success. We support labs and universities to help them learn and explore. And we fund grants to help them turn a dream into a reality. And we have a patent system to protect their inventions. And we offer loans to help them turn those inventions into successful businesses.
And the investments don’t always pay off. But when they do, they change our lives in ways that we could never have imagined. Computer chips and GPS technology, the Internet — all these things grew out of government investments in basic research. And sometimes, in fact, some of the best products and services spin off completely from unintended research that nobody expected to have certain applications.
Businesses then used that technology to create countless new jobs.
So the founders of Google got their early support from the National Science Foundation. The Apollo project that put a man on the moon also gave us eventually CAT scans. And every dollar we spent to map the human genome has returned $140 to our economy — $1 of investment, $140 in return.
Dr. Collins helped lead that genome effort, and that’s why we thought it was appropriate to have him here to announce the next great American project, and that’s what we’re calling the BRAIN Initiative.
As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven’t unlocked the mystery of the three pounds of matter that sits between our ears. (Laughter.) But today, scientists possess the capability to study individual neurons and figure out the main functions of certain areas of the brain. But a human brain contains almost 100 billion neurons making trillions of connections.
So Dr. Collins says it’s like listening to the strings section and trying to figure out what the whole orchestra sounds like. So as a result, we’re still unable to cure diseases like Alzheimer’s or autism, or fully reverse the effects of a stroke. And the most powerful computer in the world isn’t nearly as intuitive as the one we’re born with. So there is this enormous mystery waiting to be unlocked, and the BRAIN Initiative will change that by giving scientists the tools they need to get a dynamic picture of the brain in action and better understand how we think and how we learn and how we remember. And that knowledge could be — will be — transformative. In the budget I will send to Congress next week, I will propose a significant investment by the National Institutes of Health, DARPA, and the National Science Foundation to help get this project off the ground.
I’m directing my bioethics commission to make sure all of the research is being done in a responsible way. And we’re also partnering with the private sector, including leading companies and foundations and research institutions, to tap the nation’s brightest minds to help us reach our goal. And of course, none of this will be easy. If it was, we would already know everything there was about how the brain works, and presumably my life would be simpler here. (Laughter.) It could explain all kinds of things that go on in Washington. (Laughter.) We could prescribe something. (Laughter.)
So it won’t be easy. But think about what we could do once we do crack this code. Imagine if no family had to feel helpless watching a loved one disappear behind the mask of Parkinson’s or struggle in the grip of epilepsy. Imagine if we could reverse traumatic brain injury or PTSD for our veterans who are coming home. Imagine if someone with a prosthetic limb can now play the piano or throw a baseball as well as anybody else, because the wiring from the brain to that prosthetic is direct and triggered by what’s already happening in the patient’s mind. What if computers could respond to our thoughts or our language barriers could come tumbling down. Or if millions of Americans were suddenly finding new jobs in these fields — jobs we haven’t even dreamt up yet — because we chose to invest in this project. That’s the future we’re imagining. That’s what we’re hoping for. That’s why the BRAIN Initiative is so absolutely important. And that’s why it’s so important that we think about basic research generally as a driver of growth and that we replace the across-the-board budget cuts that are threatening to set us back before we even get started.
A few weeks ago, the directors of some of our national laboratories said that the sequester — these arbitrary, across-the-board cuts that have gone into place — are so severe, so poorly designed that they will hold back a generation of young scientists. When our leading thinkers wonder if it still makes sense to encourage young people to get involved in science in the first place because they’re not sure whether the research funding and the grants will be there to cultivate an entire new generation of scientists, that’s something we should worry about. We can’t afford to miss these opportunities while the rest of the world races ahead. We have to seize them. I don’t want the next job-creating discoveries to happen in China or India or Germany. I want them to happen right here, in the United States of America. And that’s part of what this BRAIN Initiative is about. That’s why we’re pursuing other “grand challenges” like making solar energy as cheap as coal or making electric vehicles as affordable as the ones that run on gas. They’re ambitious goals, but they’re achievable. And we’re encouraging companies and research universities and other organizations to get involved and help us make progress. We have a chance to improve the lives of not just millions, but billions of people on this planet through the research that’s done in this BRAIN Initiative alone.
But it’s going to require a serious effort, a sustained effort. And it’s going to require us as a country to embody and embrace that spirit of discovery that is what made America, America. They year before I was born, an American company came out with one of the earliest mini-computers. It was a revolutionary machine, didn’t require its own air conditioning system. That was a big deal. It took only one person to operate, but each computer was eight feet tall, weighed 1,200 pounds, and cost more than $100,000. And today, most of the people in this room, including the person whose cell phone just rang — (laughter) — have a far more powerful computer in their pocket. Computers have become so small, so universal, so ubiquitous, most of us can’t imagine life without them — certainly, my kids can’t. And, as a consequence, millions of Americans work in fields that didn’t exist before their parents were born. Watson, the computer that won “Jeopardy,” is now being used in hospitals across the country to diagnose diseases like cancer. That’s how much progress has been made in my lifetime and in many of yours. That’s how fast we can move when we make the investments.
But we can’t predict what that next big thing will be. We don’t know what life will be like 20 years from now, or 50 years, or 100 years down the road. What we do know is if we keep investing in the most prominent, promising solutions to our toughest problems, then things will get better. I don’t want our children or grandchildren to look back on this day and wish we had done more to keep America at the cutting edge. I want them to look back and be proud that we took some risks, that we seized this opportunity. That’s what the American story is about. That’s who we are.
That’s why this BRAIN Initiative is so important. And if we keep taking bold steps like the one we’re talking about to learn about the brain, then I’m confident America will continue to lead the world in the next frontiers of human understanding. And all of you are going to help us get there.
So I’m very excited about this project. Francis, let’s get to work. God bless you and God bless the United States of America. Thank you. (Applause.)
A LITTLE EARLIER, AT DARPA’S
DARPA Fold F(x) Program to Advance Synthetic Biomedical Polymers
The Defense Advanced Research Projects Agency (DARPA) is soliciting proposals for advancing “Folded Non-Natural Polymers with Biological Function” under a new Broad Agency Announcement for the Fold F(x) program.
While the biopharmaceutical industry has realized many outstanding protein and oligonucleotide reagents and medicines by screening large biopolymer libraries for desired function, significant technical gaps remain to rapidly address the full suite of existing and anticipated national security threats in DoD medicine (e.g., diagnostics and remediation strategies for chemical/biological warfare agents and infectious disease threats).
The objective of Fold F(x) is to develop processes enabling the rapid synthesis, screening, sequencing and scale-up of folded, non-natural, sequence-defined polymers with expanded functionality. The program will specifically address the development of non-natural affinity reagents that can bind and respond to a selected target, as well as catalytic systems that can either synthesize or degrade a desired target.
While non-natural folding polymers (e.g., foldamers) are known, broad utilization of these systems is currently limited because there is no available approach for rapidly developing and screening large non-natural polymer libraries. Fold F(x) will address this technical gap to create new molecular entities that will become future critical reagents in sensor and diagnostic applications, novel medicine leads against viral and bacterial threats, and new polymeric materials for future material science applications.
DARPA anticipates that successful efforts will include (1) novel synthetic approaches that yield large libraries (>109 members) of non-natural sequence-defined polymers; (2) flexible screening strategies that enable the selection of high affinity/specificity binders and high activity/selectivity catalysts from the non-natural libraries; (3) demonstration that the screening approach can rapidly (<4 days) yield affinity reagents or catalysts against targets of interest to the DoD; and (4) demonstration of scalability and transferability to the DoD scientific community.
DARPA seeks proposals that significantly advance the area of non-natural polymer synthesis, screening and sequencing for DoD-relevant threats. Proposals that simply provide evolutionary improvements in state-of-the-art technology will not be considered.
A Proposers’ Day Webinar for the Fold F(x) Program will be held on January 28, 2014. Further details are available under Solicitation Number: DARPA-BAA-14-13. White papers are due by February 6, 2014.
Source: FBO.gov
They deleted this from their website, but not from Internet
Health threats often evolve more quickly than health solutions. Despite ongoing research in the government and the biopharmaceutical industry to identify new therapies, the Department of Defense currently lacks the tools to address the full spectrum of chemical, biological, and disease threats that could impact the readiness of U.S. forces. DARPA created the Folded Non-Natural Polymers with Biological Function program (Fold F(x)) to give DoD medical researchers new tools to develop medicines, sensors, and diagnostics using new libraries of synthetic polymers.
The human body contains natural, folded polymers such as DNA, RNA, and proteins. These are made up of strings of specific biological molecules, or monomers, with the potential for massive variation in sequence, structure, and function. The body’s library of natural polymers is massive, but ultimately limited by the number of naturally present monomers. Through Fold F(x), DARPA is looking to expand the body’s biomolecular arsenal using non-natural, sequence-dictated polymers built from lab-created monomers.
Broad use of folded, non-natural polymers has been limited because no approach yet exists for rapidly developing large libraries of such sequence-dictated polymers. However, recent advances in the theory for predicting folds in polymer structure enable a more targeted search for polymers with specific attributes. Additionally, new, high-throughput analytical chemistry tools may enable researchers to efficiently screen massive subsets of polymers to essentially find the needle in the haystack to confront a given health threat. Finally, recently developed tools for determining polymer structure, function, and in vivo effects can further accelerate the characterization of promising non-natural polymers once they have been identified.
To achieve its objective, Fold F(x) seeks to develop the following capabilities: 1) processes that enable rapid, high-fidelity synthesis of monomers and polymer libraries at scale; 2) automated screening of polymers against a target; and 3) automated sequencing and characterization of successful polymers. The capabilities developed will need to be generalized and extendable so they can be applied to a broad range of potential applications.
If Fold F(x) is successful, synthetic polymers, produced at low cost in libraries containing trillions of combinations, would give scientists vastly more molecules to work with in the search for new health solutions and greatly increase the likelihood that a molecule can be found to combat a given health threat. Synthetic polymers would also offer other benefits over natural polymers including greater lifetime in the blood and less immunogenicity.
LATER…
DOES THIS REMIND YOU OF ANY PARTICULAR IMPLANT: SRI Biosciences DARPA Fold F(X) Synthetic Polymers Contract
SRI Biosciences, a division of SRI International, has been awarded a $10 million contract under a Defense Advanced Research Projects Agency (DARPA) program to reimagine how proteins are constructed and to develop novel medicines and diagnostics as countermeasures to chemical and biological threats.
The new contract is part of DARPA’s Folded Non-Natural Polymers with Biological Function program, known as Fold F(x). The initial goal of the program will be to develop biologically active non-natural polymers that are structurally similar to naturally occurring proteins, but without their limitations, such as sensitivity to heat denaturation or chemical degradation.
To develop the new polymers, SRI is combining its expertise in medicinal chemistry and biopolymer design with a breakthrough approach to screening vast numbers of compounds. The novel polymers are being made from entirely new types of monomer structures based on drug-like scaffolds with high functional group densities.
SRI’s compound screening innovation is based on its proprietary Fiber-Optic Array Scanning Technology (FASTcell™). Originally developed to identify circulating tumor cells in a blood sample, FASTcell can distinguish a single tumor cell among tens of millions of healthy ones in a few minutes.
With DARPA support, SRI is expanding this technology to screen 25 million compounds in just one minute.
“Our goal is to develop a method that can enable rapid, large-scale responses to a bioterrorism threat or an infectious disease epidemic,” said Peter Madrid, Ph.D., program director in SRI Biosciences’ Center for Chemical Biology and co-principal investigator and leader of the chemistry effort of the project. “We are looking for non-natural polymers to detect or neutralize identified chemical or biological threats. Once we find potent molecules, we will be able to produce them at mass scale.”
The overall goal of the Fold F(x) program is to expand on the utility of proteins and DNA, and to overcome their limitations byre-engineering their polymer backbones and side chain diversity—creating new molecules with improved functionality such as stability, potency and catalytic function in environments usually hostile for biopolymers.
The knowledge to design new functional molecules from first principles doesn’t exist yet. The alternative is to synthesize enormous libraries of non-natural polymers and screen for sequences that have a desired action. Finding a single effective compound, such as one that can block a virus, may require screening hundreds of millions of compounds.
“We are taking a full departure from how nature does things to come up with new ways of mimicking protein function in a highly tailored and controlled way,” said Nathan Collins, Ph.D., executive director of SRI Biosciences’ Discovery Sciences Section and principal investigator of SRI’s Fold F(x) project. “Our breakthrough has been to adapt SRI’s FASTcell technology to screen libraries of non-natural polymers. It’s very exciting to be doing such novel research.”
Initially the program will focus on screening massive numbers of non-natural polymers for potential uses against security threats.
As a proof of concept, the team will design, synthesize and screen chemically unique libraries of 100 million non-natural polymers for activity against a variety of agents, including toxins such as ricin and viruses such as the H1N1 bird flu strain of influenza.
As the program evolves it may progress to include a range of possibilities, such as how to synthesize molecules to fold such that they emit light, have enhanced levels of strength or elasticity, or store power.
Sources: SRI International, DARPA
Stargate Project
From Wikipedia, the free encyclopedia
Stargate Project was the 1991 code name for a secret U.S. Army unit established in 1978 at Fort Meade, Maryland, by the Defense Intelligence Agency (DIA) and SRI International (a California contractor) to investigate the potential for psychic phenomena in military and domestic intelligence applications. The Project, and its precursors and sister projects, originally went by various code names—GONDOLA WISH, GRILL FLAME, CENTER LANE, PROJECT CF, SUN STREAK, SCANATE—until 1991 when they were consolidated and rechristened as “Stargate Project”.
Stargate Project work primarily involved remote viewing, the purported ability to psychically “see” events, sites, or information from a great distance.[1] The project was overseen until 1987 by Lt. Frederick Holmes “Skip” Atwater, an aide and “psychic headhunter” to Maj. Gen. Albert Stubblebine, and later president of the Monroe Institute.[2] The unit was small-scale, comprising about 15 to 20 individuals, and was run out of “an old, leaky wooden barracks”.[3]
The Stargate Project was terminated and declassified in 1995 after a CIA report concluded that it was never useful in any intelligence operation. Information provided by the program was vague and included irrelevant and erroneous data, and there was reason to suspect that its project managers had changed the reports so they would fit background cues.[4] The program was featured in the 2004 book and 2009 film, both titled The Men Who Stare at Goats,[5][6][7][8] although neither mentions it by name.
THE LIST OF RESEARCHES THEY FUNDED MIGHT BLOW YOUR BRAIN
Key private sector partners have made important commitments to support the BRAIN Initiative, including:
The Allen Institute for Brain Science: The Allen Institute, a nonprofit medical research organization, is a leader in large-scale brain research and public sharing of data and tools. In March 2012, the Allen Institute for Brain Science embarked upon a ten-year project to understand the neural code: how brain activity leads to perception, decision making, and ultimately action. The Allen Institute’s expansion, with a $300M investment from philanthropist Paul G. Allen in the first four years, was based on the recent unprecedented advances in technologies for recording the brain’s activity and mapping its interconnections. More than $60M annually will be spent to support Allen Institute projects related to the BRAIN Initiative.
Howard Hughes Medical Institute: HHMI is the Nation’s largest nongovernmental funder of basic biomedical research and has a long history of supporting basic neuroscience research. HHMI’s Janelia Farm Research Campus in Virginia was opened in 2006 with the goal of developing new imaging technologies and understanding how information is stored and processed in neural networks. It will spend at least $30 million annually to support projects related to this initiative.
Kavli Foundation: The Kavli Foundation anticipates supporting activities that are related to this project with approximately $4 million dollars per year over the next ten years. This figure includes a portion of the expected annual income from the endowments of existing Kavli Institutes and endowment gifts to establish new Kavli Institutes over the coming decade. This figure also includes the Foundation’s continuing commitment to supporting project meetings and selected other activities.
Salk Institute for Biological Studies: The Salk Institute, under its Dynamic Brain Initiative, will dedicate over $28 million to work across traditional boundaries of neuroscience, producing a sophisticated understanding of the brain, from individual genes to neuronal circuits to behavior. To truly understand how the brain operates in both healthy and diseased states, scientists will map out the brain’s neural networks and unravel how they interrelate. To stave off or reverse diseases such as Alzheimer’s and Parkinson’s, scientists will explore the changes that occur in the brain as we age, laying the groundwork for prevention and treatment of age-related neurological diseases.
“National Institutes of Health chief Francis Collins says the brain initiative builds on recent advances in attaching electronic implants to brain cells. That was demonstrated last year in dramatic scenes of fully paralyzed patients manipulating robot arms to sip coffee and grasp rubber balls. And through increased computer power, scientists are now better able to collect data from the 86 billion vastly interconnected cells within the 3-pound human brain.”
April 2, 2013, 12:00 PM CESTBy Peter Alexander and Alastair Jamieson, NBC News and Maggie Fox, Senior Writer
President Obama pitched a human brain research initiative on Tuesday that he likened to the Human Genome Project to map all the human DNA, and said it will not only help find cures for diseases such as Alzheimer’s and autism, but create jobs and drive economic growth…
It’s not clear just what the initiative will do. Obama and collins said they’d appointed a “dream team” of experts to lay out the agenda — they should report back before the end of the summer. They are led by neurobiologists Cori Bargmann of Rockefeller University and William Newsome of Stanford University.
The public-private initiative, with money from groups such as the Howard Hughes Medical Institute and Microsoft co-founder Paul Allen’s brain mapping project, aims to find a way to take pictures of the brain in action in real time.
“We want to understand the brain to know how we reason, how we memorize, how we learn, how we move, how our emotions work. These abilities define us, yet we hardly understand any of it,” said Miyoung Chun, vice president of science programs at The Kavli Foundation, which is taking part in the initiative and which funds basic research in neuroscience and physics.
The project has some big money and some big science to build on. Allen pumped another $300 million into his institute’s brain mapping initiative a year ago, and has published freely available maps of the human and mouse brains. The Howard Hughes Medical Institute built a whole research campus devoted to brain science, called Janelia Farm, in Virginia.
Arati Prabhakar, director of the Defense Advanced Research Projects Agency (DARPA) pointed to a project that allowed a quadriplegic woman to control a robot arm with her thoughts alone.
“There is nothing like a project to inspire people to go to that next level,” Collins told a telephone briefing.
Not everybody is happy about a centralized, administration-led project. Michael Eisen, a biologist at the University of California at Berkeley, said earlier this year that grand projects in biology such as Project ENCODE for DNA analysis were emerging as the “greatest threat” to individual discovery-driven science.
“It’s one thing to fund neuroscience, another to have a centralized 10-year project to ‘solve the brain,'” Eisen wrote in a Twitter update in February.
“It’s great to see the president supporting basic neuroscience research. And the amount of money is enough to seed new initiatives, which is the way to start something,”
An MRI scan reveals the gross anatomical structure of the human brain. (Image credit: Courtesy FONAR Corporation)
The initial funding for a major new brain research initiative will come largely from the National Institutes of Health and the Defense Advanced Research Projects Agency (DARPA), with contributions from the National Science Foundation and private foundations, officials said today (April 2).
After President Obama announced the launch of the BRAIN Initiative this morning, the directors of the National Institutes of Health (NIH) and DARPA took public questions via the Internet about specific plans for the project and who will pay. The agencies expect about $100 million in 2014 to start the initiative.
BRAIN stands for Brain Research through Advancing Innovative Neurotechnologies. In it’s planning stages, the project was called the Brain Activity Map, because the goal is to understand how neural networks function. Currently, researchers can detect the activities of single brain cells; they can also measure brain activity on the macro level using technology such as functional magnetic resonance imaging. But the middle level — the actions of hundreds and thousands of neurons working together in circuits — remains largely mysterious.
“This initiative is an idea whose time has come,” NIH director Francis Collins said in the White House Q&A session. He called the human brain the “greatest scientific frontier you could think of.” [Gallery: Slicing Through the Brain]
Funding the brain map
President Obama announced this morning that the Fiscal Year 2014 budget would include about $100 million in seed funding for the BRAIN Initiative. Collins broke those numbers down: The NIH will provide about $40 million, much of that from the Neuroscience Blueprint, an NIH collaboration with a rolling investment fund for nervous system research. Some NIH discretionary funds will also go toward the project, Collins said.
The National Science Foundation will provide about $20 million in funding, Collins said, and DARPA will contribute about $50 million. Private foundations, including the Howard Hughes Medical Institute, the Salk Institute for Biological Studies and the Kavli Institute, will also provide funds.
DARPA’s interest in the project stems largely from concerns about “wounded warriors,” said director Arati Prabhakar. The agency hopes the BRAIN Initiative will provide answers about how to treat post-traumatic stress disorder, brain injuries and other neurological problems for injured soldiers. The project may also inspire new computing processes as scientists learn how the brain works and use that as inspiration for artificial circuits, Prabhakar said.
Bumps ahead?
Federal funding for research has been flat in recent years, and the federal budget sequester has further squeezed agencies such as the NIH and NSF with 9 percent cuts across the board. The BRAIN Initiative is projected to last more than a decade, with no guarantee the fiscal situation will bounce back. Some neuroscience researchers, including Donald Stein of the Emory School of Medicine, have argued that funding is a “zero-sum game” and that the BRAIN Initiative will take resources from other worthy brain research causes.
Collins acknowledged the budget challenge.
“One might well ask, ‘Is this the wrong time to be starting something new and innovative?'” he said.
But with the technology needed to measure large neural networks just coming into its own, delaying would be counterproductive, Collins argued.
“If you could see the opportunity for the next big advance … it would be very hard to say we’re going to hunker down for awhile and wait until the budget gets better,” he said.
2019: Around min 11, they present the tech that they hope to develop into a brain recording implant for humans
Magnetic nanoparticles used to make massive advancements in brain imaging.
A $4.5 Billion Price Tag for the BRAIN Initiative?
The price of President Barack Obama’s BRAIN may have just skyrocketed. Last year, the White House unveiled a bold project to map the human brain in action, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, and commanded several federal agencies to quickly develop plans to make it reality. To kick-start the project, the president allocated about $100 million this year to BRAIN, spread over the National Institutes of Health (NIH), the National Science Foundation, and the Defense Advanced Research Projects Agency.
Now, after more than a year of meetings and deliberations, an NIH-convened working group has fleshed out some of the goals and aspirations of BRAIN and tried to offer a more realistic appraisal of the funding needed for the agency’s share of the project: $4.5 billion over the course of a decade.
Neuroscientist Cornelia Bargmann, of Rockefeller University in New York City, who led the working group, sought to put that cost in perspective at a press conference today, saying it amounted to “about one six-pack of beer for each American over the entire 12 years of the program.”
NIH, which provides $40 million of BRAIN’s current funding, doesn’t have a plan in place for where to get extra money called for in the new report, NIH Director Francis Collins told reporters. “It won’t be fast, it won’t be easy, and it won’t be cheap,” he says. Regardless, Collins, who commissioned the new report to guide his agency’s role in the initiative, embraced the plan wholeheartedly:
86 billion neurons take note: I’ve accepted a scientific vision for #BRAINI that will transform neuroscience: http://t.co/12xluad54U#NIH
The report lays out a 10- to 12-year plan for investing $300 million to $500 million per year to develop new tools to monitor and map brain activity and structure, beginning in fiscal year 2016. It suggests focusing on tool development for the first 5 to 6 years, then ramping up funding as new techniques come online. A key goal is to produce cheaper, more accessible tools that all researchers can use without needing special training, so that the overall cost of doing neuroscience research goes down over time, Bargmann says.
The panel acknowledges the uncertainty of their cost estimate. “While we did not conduct a detailed cost analysis, we considered the scope of the questions to be addressed by the initiative, and the cost of programs that have developed in related areas over recent years. Thus our budget estimates, while provisional, are informed by the costs of real neuroscience at this technological level,” the group writes.
The first round of requests for NIH grant applications already went out last fall, and awardees will be announced in September, according to Collins. Additional opportunities to apply for NIH funding will open up by fall, based on this new, more detailed report, he says. Researchers planning to apply “may now consider that [the report] is a blueprint of where we want to go,” Collins added.
*Correction, 10 June, 12:17 p.m.: This article has been corrected to reflect that the $4.5 billion proposed price tag for the BRAIN initiative refers only to NIH’s portion of the project, not all funding. – Science Mag.
Advisory Committee to the Director, Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative Working Group
The National Institutes of Health (NIH) convened a BRAIN Working Group of the Advisory Committee to the Director, NIH, to develop a rigorous plan for achieving this scientific vision. This report presents the findings and recommendations of the working group, including the scientific background and rationale for The BRAIN Initiative® as a whole and for each of seven major goals articulated in the report. In addition, we include specific deliverables, timelines, and cost estimates for these goals as requested by the NIH Director. Read more in the BRAIN 2025 Report.
As the NIH BRAIN Initiative rapidly approached its halfway point, the ACD BRAIN Initiative Working Group 2.0 was asked to assess BRAIN’s progress and advances within the context of the original BRAIN 2025 report, identify key opportunities to apply new and emerging tools to revolutionize our understanding of brain circuits, and designate valuable areas of continued technology development. Alongside, the BRAIN Neuroethics Subgroup was tasked with considering the ethical implications of ongoing research and forecasting what the future of BRAIN advancements might entail, crafting a neuroethics “roadmap” for the Initiative. Read more in the BRAIN 2.0 companion reports (BRAIN Initiative 2.0 report and Neuroethics report).
Wireless linkage of brains may soon go to human testing
Wireless communication directly between brains is one step closer to reality thanks to $8 million in Department of Defense follow-up funding for Rice University neuroengineers.
The Defense Advanced Research Projects Agency (DARPA), which funded the team’s proof-of-principle research toward a wireless brain link in 2018, has asked for a preclinical demonstration of the technology that could set the stage for human tests as early as 2022.
“We started this in a very exploratory phase,” said Rice’s Jacob Robinson, lead investigator on the MOANA Project, which ultimately hopes to create a dual-function, wireless headset capable of both “reading” and “writing” brain activity to help restore lost sensory function, all without the need for surgery.
MOANA, which is short for “magnetic, optical and acoustic neural access,” will use light to decode neural activity in one brain and magnetic fields to encode that activity in another brain, all in less than one-twentieth of a second.
“We spent the last year trying to see if the physics works, if we could actually transmit enough information through a skull to detect and stimulate activity in brain cells grown in a dish,” said Robinson, an associate professor of electrical and computer engineering and core faculty member of the Rice Neuroengineering Initiative.
Jacob Robinson (Photo by Tommy LaVergne/Rice University)
“What we’ve shown is that there is promise,” he said. “With the little bit of light that we are able to collect through the skull, we were able to reconstruct the activity of cells that were grown in the lab. Similarly, we showed we could stimulate lab-grown cells in a very precise way with magnetic fields and magnetic nanoparticles.”
Robinson, who’s orchestrating the efforts of 16 research groups from four states, said the second round of DARPA funding will allow the team to “develop this further into a system and to demonstrate that this system can work in a real brain, beginning with rodents.”
If the demonstrations are successful, he said the team could begin working with human patients within two years.
Ethics in a void of regulation? No probs, we self regulate, we’re used to that, we’re the Government!
“Most immediately, we’re thinking about ways we can help patients who are blind,” Robinson said. “In individuals who have lost the ability to see, scientists have shown that stimulating parts of the brain associated with vision can give those patients a sense of vision, even though their eyes no longer work.”
The MOANA team includes 15 co-investigators from Rice, Baylor College of Medicine, the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Duke University, Columbia University, the Massachusetts Institute of Technology and Yale’s John B. Pierce Laboratory.
The project is funded through DARPA’s Next-Generation Nonsurgical Neurotechnology (N3) program. – RICE University
The BRAIN Initiative has never been concluded. We’re living it now.
Silview.media
UPDATE JULY 25, 2021
My conclusion above just got fully confirmed a few days ago, more so, BRAIN went woke, if you can imagine that:
To be continued? Our work and existence, as media and people, is funded solely by our most generous supporters. But we’re not really covering our costs so far, and we’re in dire needs to upgrade our equipment, especially for video production. Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!
! Articles can always be subject of later editing as a way of perfecting them
We gave up on our profit shares from masks, if you want to help us, please use the donation button! We think frequent mask use, even short term use can be bad for you, but if you have no way around them, at least send a message of consciousness. Get it here!
“In the early nineties, pioneering steps were taken in the use of mRNA as a therapeutic tool for vaccination. In the following decades, an improved understanding of the mRNA pharmacology, together with novel insights in immunology have positioned mRNA-based technologies as next-generation vaccines.”
Like teenagers the world over, Nobel Prize-winning scientist Ralph Steinman had absolutely no idea what he wanted to do when he grew up.
In a 2009 essay, the Canadian-born immunologist and cell biologist described his early school career as unfocused, only landing on an interest in biology and medicine while taking “almost every other course” at McGill University in Montreal while on scholarship as an undergraduate.
This latent interest eventually led him to Harvard Medical School, where he earned his M.D. (also on scholarship), and an internship and residency at Massachusetts General Hospital. In 1970, the young Steinman joined the Laboratory of Cellular Physiology and Immunology at Rockefeller University in New York City as a postdoctoral fellow under cell biologist and immunologist Zanvil A. Cohn. Steinman wanted to know what triggers the body’s immune system to kick into gear to initiate a response, a question few scientists at the time were asking.
Just three years later, while working with cells from the spleens of mice, Steinman and Cohn made the discovery that would shape Steinman’s future: the identification and role of a particular type of white blood cell that sets into motion and controls the body’s immune system. They termed these cells dendritic cells, after the branching, tree-like shape the cells can form.
By identifying this chief component that initiates and regulates an immune response, Steinman had discovered why, when, and how the body’s immune system reacts the way that it does, especially in the face of foreign pathogens. He’d discovered what amounted to the boss cell that kicks off immune reactions and tells other cells what to do and what not to do. Dendritic cells also play a role in autoimmune diseases, inflammation, allergies, and transplant rejections.
This discovery would revolutionize immunotherapy and eventually launch the new field of dendritic cell biology. But at the time, Steinman’s discovery was generally disregarded. Dendritic cells were considered little more than an obscure anomaly by much of the scientific community. To top it off, the cells were difficult to isolate, and low in frequency and abundance to boot. It would take more than 20 years and Steinman’s development of a new method to generate large numbers of dendritic cells for experimental use for the scientific community to finally verify and accept his theories.
His chances for surviving another year were estimated at less than five percent.
Steinman was especially interested in clinical applications for dendritic cells, dedicating much of his career toward the development of new medical therapies and treatments based on his research. His discovery led to the first therapeutic cancer vaccine in 1973, a dendritic cell-based immunotherapy for the treatment of prostate cancer. Other potential immunotherapies that have resulted include cancer and transplantation treatments and vaccines for HIV, malaria, tuberculosis, and the Epstein-Barr virus, some of which have reached clinical trials.
Steinman’s desire to see his research put into practical medical application cannot be overstated. Despite his gentle, almost grandfatherly way of speaking, he often expressed frustration at the slow speed at which experimental therapies escaped the confines of the lab and its theoretical animal and data models to reach actual patients. This impatience took on a new sense of urgency in 2007 when Steinman was diagnosed with Stage 4 (advanced) pancreatic cancer. By the time of his diagnosis, the cancer had already advanced beyond the pancreas and spread to Steinman’s lymph nodes. His chances for surviving another year were estimated at less than five percent.
So, Steinman went to work. In response to his illness, he designed and coordinated a single-case medical study with himself as the sole subject.
In addition to undergoing conventional surgery and chemotherapy, Steinman reached out to the international network of researchers in industry and academia he’d built over his decades-long career. Banding together for this common cause, he and his colleagues developed a variety of personalized cancer treatments, many based on his design and research, including vaccines developed from Steinman’s own tumor cells.
“With ten million persons afflicted each year, no one is entirely immune to cancer and its devastating effects on individuals and families. But recent advances in the development of cancer vaccines—either as therapeutic agents or as preventative measures—are hopeful indicators of progress in this field. This volume comprises invited chapters from world-renowned researchers and clinicians that shed light on recent steps forward in immunotherapeutic and preventive approaches for future cancer vaccines.” – Blackwell Publishing
A close-up look at a dendritic cell, the boss cell that kicks off immune reactions and tells other cells what to do and what not to do.
Despite his general impatience with the speed of the traditional scientific process, Steinman insisted on conducting his personal trial according to established protocols, filing mounds of paperwork with official channels and seeking appropriate permissions for untested therapies just like any other trial. Although his personalized experiment was not controlled, he wanted it well-organized and well-documented so his treatment attempts might not only find a cure for himself but also gather knowledge that could be used to benefit others.
This adherence to protocol, however, became a source of frustration for some of Steinman’s colleagues. Steinman, for example, refused combined therapies that failed to get regulatory approval, even though he and many of his colleagues felt the combined approach had a higher likelihood of success. He also initially refused to undergo multiple treatments at once because doing so would confuse the data being collected. With time of the essence, colleagues had to argue with Steinman to get him to prioritize the possibility of his health and longevity over proper protocol and clean experimental results. All told, Steinman underwent as many as eight experimental therapies, in addition to surgery and chemotherapy, to combat his disease.
Four and a half years after his cancer diagnosis, he died just three days before the Nobel Prize announcement
During his long career, he received numerous awards and honors, including the prestigious Lasker Award (sometimes referred to as the American Nobel) in 2007. While in the midst of his illness and self-experimentation, he was also nominated for the 2011 Nobel Prize in Physiology or Medicine for his discovery of the dendritic cell and subsequent contributions to immunology research and medicine.
Steinman joked often about surviving long enough to witness the awards announcement, and as late as a week before, the possibility seemed likely. But on September 30, 2011, four and a half years after his cancer diagnosis, he died just three days before the Nobel Prize announcement. He was 68 years old.
Nobel Prize rules generally prohibit the awarding of a prize posthumously, but given the unusual circumstances and unfortunate timing of events, the Nobel Committee ruled to allow the honor to stand. Steinman shares the prize with American immunologist Bruce A. Beutler and French biologist Jules A. Hoffman, also for their work in the area of immunity research.
Although no one can be sure of the efficacy of the dendritic cell-based immunotherapies Steinman underwent or which one(s) might have helped, the Nobel Laureate lived more than four times longer than expected. His decades of work have contributed to clinical therapies for cancer and infectious diseases that will benefit patients for generations to come. And despite those early years of unfocused study, even his self-experimentation laid the groundwork for future treatments, including an immunotherapy against pancreatic cancer based on data gathered during Steinman’s final experiment. – Folks Magazine
Ralph Steinman died days before it was announced that he was to share the Nobel Prize for Medicine. His work had been part of an unorthodox experiment to save his life, wrote Politico journalist Brett Norman, quoted by BBC, 2011.
When Ralph Steinman learned he had pancreatic cancer, the dogged immunologist put his life’s work to the test.
He launched a life-and-death experiment in the most personal of personalised medicine.
By unlucky coincidence, he had been diagnosed with a disease that might benefit from the therapies he had spent his life researching.
Usually, medical research proceeds at a glacial, thorough pace: cell studies lead to studies in small animals which lead to studies in larger animals, which eventually lead to small, highly-selective clinical trials in humans. But Steinman didn’t have that kind of time.
He did, however, have access to world class facilities, cutting-edge technology, and some of the world’s most brilliant medical minds, thanks to his position as a researcher at Rockefeller University.
So Steinman decided to make his own body the ultimate experiment.
He had removed a piece of the tumour that would eventually kill him. He then trained his immune cells to track down any hint of the tumour that might have escaped the surgery, like putting hounds on a scent.
On Friday, four-and-a-half years after he was diagnosed with a disease that kills the vast majority of its victims in less than one, that experiment came to an end.
Steinman died at the end of a week in which he continued his work in the lab. It was a testament to the undying optimism of the scientific enterprise, to the unrelenting man, and to the limits of both.
An open secret
I joined Rockefeller as a science writer to chronicle the work of its researchers – Steinman included – about halfway through one of his experiments on himself.
His experiment was an open secret on campus, registered with the hospital and aided by a long-time friend and staff physician. The sense of hope was palpable, bound up in respect for the man but also something broader.
Could the painstakingly incremental research that seemed to have so much potential on lab animals this once grant a reprieve from certain death?
Of course everyone was rooting for him, and I had a special interest. Toward the end of 1999, my father had a stomach complaint. Over a few months, the initial diagnosis of an ulcer morphed into a death sentence: inoperable, metastatic cancer of the pancreas.
Pancreatic cancer is often known as the “silent killer” because it usually doesn’t produce truly scary symptoms until it has spread beyond repair. After chemotherapy, my dad bounced back for a few months, but the cancer inevitably did, too. He died at home in the early fall of 2000.
Could Steinman beat it?
I hoped so. The work had promise.
“In the last few years of his life, Dr. Ralph Steinman made himself into an extraordinary human lab experiment, testing a series of unproven therapies – including some he helped to create – as he waged a very personal battle with pancreatic cancer.”
In 1973, along with his mentor, Zanvil Cohn, Steinman published the discovery of a new class of cell in the immune system – the dendritic cell. Like many new discoveries, his faced a deeply sceptical reception.
The experiments couldn’t be immediately reproduced, but Steinman was convinced of his discovery. He fought for a decade before immunologists began to broadly recognise the central importance of those cells to their field.
In the past 20 years, the study of dendritic cells has spread to hundreds of labs all over the world. Researchers are exploring how they might be harnessed to fight cancer, HIV and transplant rejection, among other major medical problems.
Dendritic cells are the “sentinel cells” of the mammalian immune system. Named after the Greek word for tree, they develop distinctive probing branches when activated, sweeping their environment in search of unwelcome things – like bacteria, viruses, tumours.
When dendritic cells encounter something they don’t like, they take a physical marker of the invader, called an antigen, and present it to B and T cells, the defenders of the body’ s immune system. Those cells then adapt weapons to identify and destroy the interlopers.
Steinman bet that if he could train his dendritic cells to recognise and tag his cancer, they would be able to convince the T and B cells to do the rest.
Dream deferred
There was no good reason to expect that Steinman could fashion a cure for one of the world’s most vicious cancers in time to save his own life. But it was easy to think it was at least possible. The made-for-Hollywood story of the renegade scientist who fights the establishment to prove his discovery, and then uses it to cure himself, was powerful enough to compel hope.
Unfortunately, the dendritic cell-based treatments didn’t work – at least not well enough.
Training Steinman’s dendritic cells to the tumour did generate a “vigorous immune response to mesothelin, a tumour specific antigen,” said Dr. Sarah Schlesigner, a longtime colleague of Steinman’s who ran the trial.
In other words, while there were significant side effects, the therapy seemed to enable him to work much longer than he otherwise would have. Month after month, he remained at the University, continuing his work.
He survived much longer than expected, and continued his research until the end.
Over time, it wasn’t enough.
At least, not enough to save him.
But the research he pioneered continues – and the scientists who continue his work have an extraordinary example to follow. – BBC, 2011
To be continued? Our work and existence, as media and people, is funded solely by our most generous supporters. But we’re not really covering our costs so far, and we’re in dire needs to upgrade our equipment, especially for video production. Help SILVIEW.media survive and grow, please donate here, anything helps. Thank you!
! Articles can always be subject of later editing as a way of perfecting them
Sometimes my memes are 3D. And you can own them. Or send them to someone. You can even eat some of them. CLICK HERE